Tag Archives: asynchronous motor

China Professional 18.5kw Ye2 Mechanical Equipment Three-Phase AC Electric Induction Asynchronous Motor with Good quality

Product Description

Product Description

Features: High efficiency and energy saving, low noise and little vibration. Insulation class: F;Protection class:IP54 or IP55.

General purpose including cutting machines, pumps, fans, conveyors, machines tools of farm duty and food process.

The altitude not exceeding 1000m above sea level. The ambient temperature subject to seasonal variations but no exceeding+40ºC and not less than-15ºC.

Company Profile

ZheJiang Lanyoung Electromechanical Co., Ltd was originated from 1988, established in 2001, it owns ZheJiang Lanyoung Electromechanical Co., Ltd HangZhouShan City Branch and ZHangZhoug HangZhouang Electromechanical Co., Ltd, won the honorary title of “top 10 brands of brand network in 2019” and “excellent demonstration unit of ZHangZhoug focusing on quality and brand-making”. We are a modern company combining mechanical and electrical products research, development, production, sales and service with a long history and rich experience in production. We are experts of water pumps, motors, and fans products, the main products are stainless steel pumps, plastic corrosion-resistant submersible pumps, DC electric pumps, self-priming pump, machine tool cooling pumps, corrosion resistant pumps, sewage pumps, oil-immersed submersible pumps, blowers, medium pressure fan, multi-wing fan and so on, and we also possess practical new-type patent for a mini submersible pump. The above products can be all customized according to customer’s requirement. We have special advantages that is different from other manufacturing companies.

Product Parameters

Type  Power Pole/Speed Volt/Frequency Insulation Protection Motor housing Mount
 kw /HP
80M2 0.55/0.75 6/885rpm 380V/50HZ class F IP55 Cast Iron B3
90S 0.75/1 6/910rpm 380V/50HZ class F IP55 Cast Iron B3
90L 1.1/1.5 6/910rpm 380V/50HZ class F IP55 Cast Iron B3
100L 1.5/2 6/940rpm 380V/50HZ class F IP55 Cast Iron B3
112M 2.2/3 6/940rpm 380V/50HZ class F IP55 Cast Iron B3
132S 3/4 6/960rpm 380V/50HZ class F IP55 Cast Iron B3
132M1 4/5.5 6/960rpm 380V/50HZ class F IP55 Cast Iron B3
132M2 5.5/7.5 6/960rpm 380V/50HZ class F IP55 Cast Iron B3
160M 7.5/10 6/970rpm 380V/50HZ class F IP55 Cast Iron B3
160L 11/15 6/970rpm 380V/50HZ class F IP55 Cast Iron B3
180L 15/20 6/970rpm 380V/50HZ class F IP55 Cast Iron B3
200L1 18.5/25 6/980rpm 380V/50HZ class F IP55 Cast Iron B3
200L2 22/30 6/980rpm 380V/50HZ class F IP55 Cast Iron B3
225M 30/40 6/980rpm 380V/50HZ class F IP55 Cast Iron B3
250M 37/50 6/980rpm 380V/50HZ class F IP55 Cast Iron B3
280S 45/60 6/985rpm 380V/50HZ class F IP55 Cast Iron B3
280M 55/75 6/985rpm 380V/50HZ class F IP55 Cast Iron B3
315S 75/100 6/990rpm 380V/50HZ class F IP55 Cast Iron B3

Detailed Photos

 

Packaging & Shipping

 

Certifications

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Operating Speed: Constant Speed
Number of Stator: Three-Phase
Samples:
US$ 29/Piece
1 Piece(Min.Order)

|

Order Sample

Blue
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

induction motor

Can AC motors be used in both residential and commercial settings?

Yes, AC motors can be used in both residential and commercial settings. The versatility and wide range of applications of AC motors make them suitable for various environments and purposes.

In residential settings, AC motors are commonly found in household appliances such as refrigerators, air conditioners, washing machines, fans, and pumps. These motors are designed to meet the specific requirements of residential applications, providing reliable and efficient operation for everyday tasks. For example, air conditioners utilize AC motors to drive the compressor and fan, while washing machines use AC motors for agitating and spinning the drum.

In commercial settings, AC motors are extensively used in a wide range of applications across different industries. They power machinery, equipment, and systems that are crucial for commercial operations. Some common examples include:

  • Industrial machinery and manufacturing equipment: AC motors drive conveyor belts, pumps, compressors, mixers, fans, blowers, and other machinery used in manufacturing, production, and processing facilities.
  • HVAC systems: AC motors are used in commercial heating, ventilation, and air conditioning (HVAC) systems to drive fans, blowers, and pumps for air circulation, cooling, and heating.
  • Commercial refrigeration: AC motors are utilized in commercial refrigeration systems for powering compressors, condenser fans, and evaporator fans in supermarkets, restaurants, and cold storage facilities.
  • Office equipment: AC motors are present in various office equipment such as printers, photocopiers, scanners, and ventilation systems, ensuring their proper functioning.
  • Transportation: AC motors are used in electric vehicles, trams, trains, and other forms of electric transportation systems, providing the necessary propulsion.
  • Water and wastewater treatment: AC motors power pumps, mixers, and blowers in water treatment plants, wastewater treatment plants, and pumping stations.

The adaptability, efficiency, and controllability of AC motors make them suitable for a wide range of residential and commercial applications. Whether it’s powering household appliances or driving industrial machinery, AC motors play a vital role in meeting the diverse needs of both residential and commercial settings.

induction motor

Can you explain the difference between single-phase and three-phase AC motors?

In the realm of AC motors, there are two primary types: single-phase and three-phase motors. These motors differ in their construction, operation, and applications. Let’s explore the differences between single-phase and three-phase AC motors:

  • Number of Power Phases: The fundamental distinction between single-phase and three-phase motors lies in the number of power phases they require. Single-phase motors operate using a single alternating current (AC) power phase, while three-phase motors require three distinct AC power phases, typically referred to as phase A, phase B, and phase C.
  • Power Supply: Single-phase motors are commonly connected to standard residential or commercial single-phase power supplies. These power supplies deliver a voltage with a sinusoidal waveform, oscillating between positive and negative cycles. In contrast, three-phase motors require a dedicated three-phase power supply, typically found in industrial or commercial settings. Three-phase power supplies deliver three separate sinusoidal waveforms with a specific phase shift between them, resulting in a more balanced and efficient power delivery system.
  • Starting Mechanism: Single-phase motors often rely on auxiliary components, such as capacitors or starting windings, to initiate rotation. These components help create a rotating magnetic field necessary for motor startup. Once the motor reaches a certain speed, these auxiliary components may be disconnected or deactivated. Three-phase motors, on the other hand, typically do not require additional starting mechanisms. The three-phase power supply inherently generates a rotating magnetic field, enabling self-starting capability.
  • Power and Torque Output: Three-phase motors generally offer higher power and torque output compared to single-phase motors. The balanced nature of three-phase power supply allows for a more efficient distribution of power across the motor windings, resulting in increased performance capabilities. Three-phase motors are commonly used in applications requiring high power demands, such as industrial machinery, pumps, compressors, and heavy-duty equipment. Single-phase motors, with their lower power output, are often used in residential appliances, small commercial applications, and light-duty machinery.
  • Efficiency and Smoothness of Operation: Three-phase motors typically exhibit higher efficiency and smoother operation than single-phase motors. The balanced three-phase power supply helps reduce electrical losses and provides a more constant and uniform torque output. This results in improved motor efficiency, reduced vibration, and smoother rotation. Single-phase motors, due to their unbalanced power supply, may experience more pronounced torque variations and slightly lower efficiency.
  • Application Suitability: The choice between single-phase and three-phase motors depends on the specific application requirements. Single-phase motors are suitable for powering smaller appliances, such as fans, pumps, household appliances, and small tools. They are commonly used in residential settings where single-phase power is readily available. Three-phase motors are well-suited for industrial and commercial applications that demand higher power levels and continuous operation, including large machinery, conveyors, elevators, air conditioning systems, and industrial pumps.

It’s important to note that while single-phase and three-phase motors have distinct characteristics, there are also hybrid motor designs, such as dual-voltage motors or capacitor-start induction-run (CSIR) motors, which aim to bridge the gap between the two types and offer flexibility in certain applications.

When selecting an AC motor, it is crucial to consider the specific power requirements, available power supply, and intended application to determine whether a single-phase or three-phase motor is most suitable for the task at hand.

induction motor

What are the main components of an AC motor, and how do they contribute to its operation?

An AC motor consists of several key components that work together to facilitate its operation. These components include:

  1. Stator: The stator is the stationary part of an AC motor. It is typically made of a laminated core that provides a path for the magnetic flux. The stator contains stator windings, which are coils of wire wound around the stator core. The stator windings are connected to an AC power source and produce a rotating magnetic field when energized. The rotating magnetic field is a crucial element in generating the torque required for the motor’s operation.
  2. Rotor: The rotor is the rotating part of an AC motor. It is located inside the stator and is connected to a shaft. The rotor can have different designs depending on the type of AC motor. In an induction motor, the rotor does not have electrical connections. Instead, it contains conductive bars or coils that are short-circuited. The rotating magnetic field of the stator induces currents in the short-circuited rotor conductors, creating a magnetic field that interacts with the stator field and generates torque, causing the rotor to rotate. In a synchronous motor, the rotor contains electromagnets that are magnetized by direct current, allowing the rotor to lock onto the rotating magnetic field of the stator and rotate at the same speed.
  3. Bearing: Bearings are used to support and facilitate the smooth rotation of the rotor shaft. They reduce friction and allow the rotor to rotate freely within the motor. Bearings are typically located at both ends of the motor shaft and are designed to withstand the axial and radial forces generated during operation.
  4. End Bells: The end bells, also known as end covers or end brackets, enclose the motor’s stator and rotor assembly. They provide mechanical support and protection for the internal components of the motor. End bells are typically made of metal and are designed to provide a housing for the bearings and secure the motor to its mounting structure.
  5. Fan or Cooling System: AC motors often generate heat during operation. To prevent overheating and ensure proper functioning, AC motors are equipped with fans or cooling systems. These help dissipate heat by circulating air or directing airflow over the motor’s components, including the stator and rotor windings. Effective cooling is crucial for maintaining the motor’s efficiency and extending its lifespan.
  6. Terminal Box or Connection Box: The terminal box is a housing located on the outside of the motor that provides access to the motor’s electrical connections. It contains terminals or connection points where external wires can be connected to supply power to the motor. The terminal box ensures a safe and secure connection of the motor to the electrical system.
  7. Additional Components: Depending on the specific design and application, AC motors may include additional components such as capacitors, centrifugal switches, brushes (in certain types of AC motors), and other control devices. These components are used for various purposes, such as improving motor performance, providing starting assistance, or enabling specific control features.

Each of these components plays a crucial role in the operation of an AC motor. The stator and rotor are the primary components responsible for generating the rotating magnetic field and converting electrical energy into mechanical motion. The bearings ensure smooth rotation of the rotor shaft, while the end bells provide structural support and protection. The fan or cooling system helps maintain optimal operating temperatures, and the terminal box allows for proper electrical connections. Additional components are incorporated as necessary to enhance motor performance and enable specific functionalities.

China Professional 18.5kw Ye2 Mechanical Equipment Three-Phase AC Electric Induction Asynchronous Motor   with Good quality China Professional 18.5kw Ye2 Mechanical Equipment Three-Phase AC Electric Induction Asynchronous Motor   with Good quality
editor by CX 2024-05-16

China wholesaler Yvf/Yvp Series 5.5kw 6pole 50Hz 60Hz 380V Variable Frequency Speed AC Motor 3-Phase Asynchronous Motor Dynamo Motor with high quality

Product Description

Product Description

YVP series motors are AC variable frequency step less speed regulation motors which are specially designed and mating with asynchronous frequency inverter. The motors can run under variable frequency power source and have 2 types: with encoder and without encoder. Speed range,  constant torque running in 5-50Hz and constant power running in 50-100Hz,  stably and with small torque pulsation. According to usage requirement, it has 2 types: with encoder and without encoder. It can be equipped with independent fan cooling device to ensure better cooling effects under different speed. With encoder, the motor starts smoother and the control is more precious. This series motors apply to fan blower, water pump, hydraulic pressure station, plastic machinery, paper machinery, rubber machinery which need step less speed regulation, The motors with higher efficiency and accuracy can replace CHINAMFG electric motors.

Model Power Rated Current Speed Efficiency Power Factor Rated Torque Noise Constant Torque Regulation Range Constant Torque Regulation Range
Type KW A r/min Eff.% P.F N.m dB(A) Constant Torque Frequency Range HZ Constant Output Frequency Range HZ
synchronous speed 3000 r/min
YVF2-80M1-2 0.75 1.83 2845 75.0  0.83 2.52 73 5-50 50-100
YVF2-80M2-2 1.1 2.61 2845 76.2 0.84 3.69 73
YVF2-90S-2 1.5 3.46 2840 78.5 0.84 5.04 76
YVF2-90L-2 2.2 4.85 2840 81.0  0.85 7.4 76
YVF2-100L-2 3 6.34 2860 82.6 0.87 10.1 79
YVF2-112M-2 4 8.20  2880 81.2 0.88 13.3 80
YVF2-132S1-2 5.5 11.1 2900 85.7 0.88 18.1 86
YVF2-132S2-2 7.5 14.9 2900 87.0  0.88 24.7 86
YVF2-160M1-2 11 21.2 2930 88.4 0.89 35.9 90
YVF2-160M2-2 15 28.6 2930 89.4 0.89 48.9 90
YVF2-160L-2 18.5 34.7 2930 90.0  0.90  60.3 90
YVF2-180M-2 22 41.0  2940 90.5 0.90  71.5 91
YVF2-200L1-2 30 55.4 2950 91.4 0.90  97.0  92
YVF2-200L2-2 37 67.9 2950 92.0  0.90  120 92
YVF2-225M-2 45 82.1 2960 92.5 0.90  145 94
YVF2-250M-2 55 99.8 2965 93.0  0.90  177 96 5-50 50-70
YVF2-280S-2 75 135 2970 93.6 0.90  241 99
YVF2-280M-2 90 160 2970 93.9 0.91 297 99
YVF2-315S-2 110 195 2975 94.0  0.91 353 105 5-50 50-60
YVF2-315M-2 132 233 2975 94.5 0.91 424 105
YVF2-315L1-2 160 279 2975 94.6 0.92 514 109
YVF2-315L-2 185 323 2975 94.6 0.92 594 109
YVF2-315L2-2 200 348 2975 94.8 0.92 642 109
YVF2-315L3-2 220 383 2975 94.8 0.92 706 109
YVF2-355M1-2 220 383 2975 94.8 0.92 705 111
YVF2-355M2-2 250 435 2980 95.0  0.92 801 111
YVF2-355L1-2 280 487 2980 95.0  0.92 897 113
YVF2-355L-2 315 548 2980 95.0  0.92 1009 113
YVF2-355L2-2 355 617 2980 95.0  0.92 1138 113
YVF2-355L3-2 375 652 2980 95.0  0.92 1202 113
                   
Model Power Rated Current Speed Efficiency Power Factor Rated Torque Noise Constant Torque Regulation Range Constant Torque Regulation Range
Type KW A r/min Eff.% P.F N.m dB(A) Constant Torque Frequency Range HZ Constant Output Frequency Range HZ
synchronous speed 1000 r/min
YVF2-80M1-4 0.55 1.57 1390 71.0  0.75 3.78 73 5-50 50-100
YVF2-80M2-4 0.75 2.05 1390 73.0  0.76 5.15 73
YVF2-90S-4 1.1 2.85 1390 76.2 0.77 7.56 76
YVF2-90L-4 1.5 3.68 1390 78.5 0.79 10.3 76
YVF2-100L1-4 2.2 5.09 1410 81.0  0.81 14.9 79
YVF2-100L2-4 3 6.73 1410 82.6 0.82 20.3 79
YVF2-112M-4 4 8.80  1440 84.2 0.82 26.5 80
YVF2-132S-4 5.5 11.7 1440 85.7 0.83 36.5 86
YVF2-132M-4 7.5 15.6 1440 87.0  0.84 49.7 86
YVF2-160M-4 11 22.5 1460 88.4 0.84 72.0  90
YVF2-160L-4 15 30.0  1460 89.4 0.85 98.1 90
YVF2-180M-4 18.5 36.3 1470 90.0  0.86 120 91
YVF2-180L-4 22 42.9 1470 90.5 0.86 143 91
YVF2-200L-4 30 58.0  1470 91.4 0.86 195 92
YVF2-225S-4 37 70.2 1475 92.0  0.87 240 94
YVF2-225M-4 45 85.0  1475 92.5 0.87 291 94
YVF2-250M-4 55 103 1480 93.0  0.87 355 96
YVF2-280S-4 75 140 1480 93.6 0.87 484 99
YVF2-280M-4 90 167 1480 93.9 0.87 571 99
YVF2-315S-4 110 201 1480 94.5 0.88 710 105
YVF2-315M-4 132 240 1480 94.8 0.88 852 105
YVF2-315L1-4 160 288 1480 94.9 0.89 1032 109
YVF2-315L-4 185 333 1480 94.9 0.89 1194 109
YVF2-315L2-4 200 360 1480 94.9 0.89 1291 109
YVF2-315L3-4 220 396 1480 94.9 0.89 1420 109
YVF2-355M1-4 220 396 1490 94.9 0.89 1410 111
YVF2-355M-4 250 444 1490 95.1 0.90  1602 111
YVF2-355L1-4 280 497 1490 95.1 0.90  1795 113
YVF2-355L-4 315 559 1490 95.1 0.90  2019 113
YVF2-355L2-4 355 630 1490 95.1 0.90  2275 113
YVF2-355L3-4 375 666 1490 95.1 0.90  2404 113
                   
Model Power Rated Current Speed Efficiency Power Factor Rated Torque Noise Constant Torque Regulation Range Constant Torque Regulation Range
Type KW A r/min Eff.% P.F N.m dB(A) Constant Torque Frequency Range HZ Constant Output Frequency Range HZ
synchronous speed 1000 r/min
YVF2-80M1-6 0.37 1.30  885 62.0  0.70  3.99 73 5-50 50-100
YVF2-80M2-6 0.55 1.79 885 65.0  0.72 5.94 73
YVF2-90S-6 0.75 2.29 910 69.0  0.72 7.87 76
YVF2-90L-6 1.1 3.18 910 72.0  0.73 11.5 76
YVF2-100L-6 1.5 4.00  920 76.0  0.75 15.6 79
YVF2-112M-6 2.2 5.57 935 79.0  0.76 22.5 80
YVF2-132S-6 3 7.40  960 81.0  0.76 29.8 86
YVF2-132M1-6 4 9.75 960 82.0  0.76 39.8 86
YVF2-132M2-6 5.5 12.9 965 84.0  0.77 54.4 86
YVF2-160M-6 7.5 17.2 970 86.0  0.77 73.8 90
YVF2-160L-6 11 24.5 970 87.5 0.78 108 90
YVF2-180L-6 15 31.6 970 89.0  0.81 148 91
YVF2-200L1-6 18.5 38.6 980 90.0  0.81 180 92
YVF2-200L2-6 22 44.7 980 90.0  0.83 214 92
YVF2-225M-6 30 59.3 980 91.5 0.84 292 94
YVF2-250M-6 37 71.1 980 92.0  0.86 361 96
YVF2-280S-6 45 85.9 980 92.5 0.86 439 99
YVF2-280M-6 55 105 980 92.8 0.86 536 99
YVF2-315S-6 75 142 985 93.5 0.86 727 105
YVF2-315M-6 90 170 985 93.8 0.86 873 105
YVF2-315L1-6 110 207 985 94.0  0.86 1066 109
YVF2-315L2-6 132 245 985 94.2 0.86 1280 109
YVF2-315L3-6 160 292 985 94.5 0.87 1551 109
YVF2-355M1-6 160 292 990 94.5 0.88 1543 111
YVF2-355M-6 185 338 990 94.5 0.88 1785 111
YVF2-355M2-6 200 364 990 94.8 0.88 1929 111
YVF2-355L1-6 220 401 990 94.8 0.88 2122 113
YVF2-355L-6 250 454 990 95.0  0.88 2412 113
YVF2-355L2-6 280 509 990 95.0  0.88 2701 113
YVF2-355L3-6 315 572 990 95.0  0.88 3039 113

Model Power Rated Current Speed Efficiency Power Factor Rated Torque Noise Constant Torque Regulation Range Constant Torque Regulation Range
Type KW A r/min Eff.% P.F N.m dB(A) Constant Torque Frequency Range HZ Constant Output Frequency Range HZ
synchronous speed 750 r/min
YVF2-80M1-8 0.18 0.88 645 51.0  0.61 2.67 73 5-50 50-100
YVF2-80M2-8 0.25 1.15 645 54.0  0.61 3.7 73
YVF2-90S-8 0.37 1.49 670 62.0  0.61 5.27 76
YVF2-90L-8 0.55 2.17 670 63.0  0.61 7.84 76
YVF2-100L1-8 0.75 2.40  680 71.0  0.67 10.5 79
YVF2-100L2-8 1.1 3.32 680 73.0  0.69 15.4 79
YVF2-112M-8 1.5 4.40  690 75.0  0.69 20.8 80
YVF2-132S-8 2.2 6.04 705 78.0  0.71 29.8 86
YVF2-132M-8 3 7.90  705 79.0  0.73 40.6 86
YVF2-160M1-8 4 10.3 720 81.0  0.73 53.1 90
YVF2-160M2-8 5.5 13.6 720 83.0  0.74 73.0  90
YVF2-160L-8 7.5 17.8 720 85.5 0.75 99.5 90
YVF2-180L-8 11 25.1 730 87.5 0.76 144 91
YVF2-200L-8 15 34.1 730 88.0  0.76 196 92
YVF2-225S-8 18.5 41.1 730 90.0  0.76 242 94
YVF2-225M-8 22 47.4 730 90.5 0.78 288 94
YVF2-250M-8 30 63.4 735 91.0  0.79 390 96
YVF2-280S-8 37 77.8 735 91.5 0.79 481 99
YVF2-280M-8 45 94.1 735 92.0  0.79 585 99
YVF2-315S-8 55 111 735 92.8 0.81 715 105
YVF2-315M-8 75 151 735 93.0  0.81 974 105
YVF2-315L1-8 90 178 735 93.8 0.82 1169 109
YVF2-315L2-8 110 217 735 94.0  0.82 1429 109
YVF2-355M1-8 132 261 740 93.7 0.82 1704 111
YVF2-355M2-8 160 315 740 94.2 0.82 2065 111
YVF2-355L1-8 185 364 740 94.2 0.82 2388 113
YVF2-355L-8 200 387 740 94.5 0.83 2581 113
YVF2-355L2-8 220 426 740 94.5 0.83 2839 113
YVF2-355L3-8 250 484 740 94.5 0.83 3226 113
synchronous speed 600 r/min
YVF2-315S-10 45 100 590 91.5 0.75 728 105 5-50 50-100
YVF2-315M-10 55 121 590 92.0  0.75 890 105
YVF2-315L1-10 75 162 590 95.5 0.76 1214 109
YVF2-315L2-10 90 191 590 93.0  0.77 1457 109
YVF2-355M1-10 110 230 590 93.2 0.78 1751 111
YVF2-355M2-10 132 275 590 93.5 0.78 2137 111
YVF2-355L1-10 160 333 590 93.5 0.78 2590 113
YVF2-355L-10 185 385 590 93.5 0.78 2994 113
YVF2-355L2-10 200 417 590 93.5 0.78 3237 113
YVF2-355L3-10 220 458 590 93.5 0.78 3561 113

Detailed Photos

Our Advantages

We have more than 30years on all kinds of ac motors and gearmotor ,worm reducers producing ,nice price 
What we do:
1.Stamping of lamination
2.Rotor die-casting
3.Winding and inserting – both manual and semi-automatically
4.Vacuum varnishing
5.Machining shaft, housing, end shields, etc…
6.Rotor balancing
7.Painting – both wet paint and powder coating
8.assembly
9.Packing
10.Inspecting spare parts every processing
11.100% test after each process and final test before packing.,

FAQ

Q: Do you offer OEM service?
A: Yes
Q: What is your payment term?
A: 30% T/T in advance, 70% balance when receiving B/L copy. Or irrevocable L/C.
Q: What is your lead time?
A: About 30 days after receiving deposit or original L/C.
Q: What certifiicates do you have?
A: We have CE, ISO. And we can apply for specific certificate for different country such as SONCAP for Nigeria, COI for Iran, SASO for Saudi Arabia, et

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial, Universal, Power Tools
Operating Speed: Constant Speed
Number of Stator: Three-Phase
Species: YVP Series Frequency Control
Rotor Structure: Squirrel-Cage
Casing Protection: Protection Type
Samples:
US$ 220/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

induction motor

Are there environmental considerations associated with the use of AC motors?

Yes, there are several environmental considerations associated with the use of AC motors. These considerations are primarily related to energy consumption, greenhouse gas emissions, and the disposal of motors at the end of their life cycle. Let’s explore these environmental considerations in detail:

  • Energy Efficiency: AC motors can have varying levels of energy efficiency, which directly impacts their environmental impact. Motors with higher efficiency convert a larger percentage of electrical energy into useful mechanical work, resulting in reduced energy consumption. By selecting and using high-efficiency AC motors, energy usage can be minimized, leading to lower greenhouse gas emissions and reduced reliance on fossil fuels for electricity generation.
  • Greenhouse Gas Emissions: The electricity consumed by AC motors is often produced by power plants that burn fossil fuels, such as coal, natural gas, or oil. The generation of electricity from these fossil fuels releases greenhouse gases, contributing to climate change. By employing energy-efficient motors and optimizing motor systems, businesses and individuals can reduce their electricity demand, leading to lower greenhouse gas emissions and a smaller carbon footprint.
  • Motor Disposal and Recycling: AC motors contain various materials, including metals, plastics, and electrical components. At the end of their life cycle, proper disposal or recycling is important to minimize their environmental impact. Some components, such as copper windings and steel casings, can be recycled, reducing the need for new raw materials and energy-intensive manufacturing processes. It is crucial to follow local regulations and guidelines for the disposal and recycling of motors to prevent environmental pollution and promote resource conservation.
  • Manufacturing and Production: The manufacturing and production processes associated with AC motors can have environmental implications. The extraction and processing of raw materials, such as metals and plastics, can result in habitat destruction, energy consumption, and greenhouse gas emissions. Additionally, the manufacturing processes themselves can generate waste and pollutants. Motor manufacturers can mitigate these environmental impacts by adopting sustainable practices, using recycled materials, reducing waste generation, and implementing energy-efficient production methods.
  • Life Cycle Assessment: Conducting a life cycle assessment (LCA) of AC motors can provide a holistic view of their environmental impact. An LCA considers the environmental aspects associated with the entire life cycle of the motor, including raw material extraction, manufacturing, transportation, use, and end-of-life disposal or recycling. By analyzing the different stages of the motor’s life cycle, stakeholders can identify opportunities for improvement, such as optimizing energy efficiency, reducing emissions, and implementing sustainable practices.

To address these environmental considerations, governments, organizations, and industry standards bodies have developed regulations and guidelines to promote energy efficiency and reduce the environmental impact of AC motors. These include efficiency standards, labeling programs, and incentives for the use of high-efficiency motors. Additionally, initiatives promoting motor system optimization, such as proper motor sizing, maintenance, and control, can further enhance energy efficiency and minimize environmental impact.

In summary, the environmental considerations associated with the use of AC motors include energy efficiency, greenhouse gas emissions, motor disposal and recycling, manufacturing processes, and life cycle assessment. By prioritizing energy efficiency, proper disposal, recycling, and sustainable manufacturing practices, the environmental impact of AC motors can be minimized, contributing to a more sustainable and environmentally conscious approach to motor usage.

induction motor

Where can individuals or businesses find reliable information on selecting, installing, and maintaining AC motors?

When seeking information on selecting, installing, and maintaining AC motors, individuals and businesses can refer to various reliable sources. These sources provide valuable guidance, recommendations, and best practices related to AC motors. Here are some places where one can find reliable information:

  • Manufacturer’s Documentation: AC motor manufacturers often provide detailed documentation, including product catalogs, technical specifications, installation guides, and maintenance manuals. These documents offer specific information about their motors, such as performance characteristics, electrical requirements, mounting instructions, and recommended maintenance procedures. Manufacturers’ websites are a common source for accessing these resources.
  • Industry Associations: Industry associations related to electrical engineering, motor manufacturing, or specific applications (e.g., HVAC, pumps, or industrial machinery) can be excellent resources for reliable information. These associations often publish technical articles, guidelines, and standards that cover a wide range of topics, including motor selection, installation practices, efficiency standards, and maintenance recommendations. Examples of such associations include the National Electrical Manufacturers Association (NEMA), the Institute of Electrical and Electronics Engineers (IEEE), and the Air Conditioning, Heating, and Refrigeration Institute (AHRI).
  • Professional Electricians and Engineers: Consulting with professional electricians or electrical engineers who specialize in motor applications can provide valuable insights. These professionals possess practical knowledge and experience in selecting, installing, and maintaining AC motors. They can offer personalized advice based on specific project requirements and industry best practices.
  • Energy Efficiency Programs and Agencies: Energy efficiency programs and agencies, such as government departments, utility companies, or environmental organizations, often provide resources and guidance on energy-efficient motor selection and operation. These programs may offer information on motor efficiency standards, rebate programs for high-efficiency motors, and energy-saving practices. Examples include the U.S. Department of Energy (DOE) and its Energy Star program.
  • Online Technical Forums and Communities: Online forums and communities focused on electrical engineering, motor applications, or specific industries can be valuable sources of information. Participating in these forums allows individuals and businesses to interact with experts, discuss motor-related topics, and seek advice from professionals and enthusiasts who have firsthand experience with AC motors.
  • Books and Publications: Books and technical publications dedicated to electrical engineering, motor technology, or specific applications can provide comprehensive information on AC motors. These resources cover topics ranging from motor theory and design principles to practical installation techniques and maintenance procedures. Libraries, bookstores, and online retailers offer a wide selection of relevant publications.

When accessing information from these sources, it is important to ensure that the information is up-to-date, reliable, and relevant to the specific application or requirements. Consulting multiple sources and cross-referencing information can help verify accuracy and establish a well-rounded understanding of AC motor selection, installation, and maintenance.

induction motor

Can you explain the basic working principle of an AC motor?

An AC motor operates based on the principles of electromagnetic induction. It converts electrical energy into mechanical energy through the interaction of magnetic fields. The basic working principle of an AC motor involves the following steps:

  1. The AC motor consists of two main components: the stator and the rotor. The stator is the stationary part of the motor and contains the stator windings. The rotor is the rotating part of the motor and is connected to a shaft.
  2. When an alternating current (AC) is supplied to the stator windings, it creates a changing magnetic field.
  3. The changing magnetic field induces a voltage in the rotor windings, which are either short-circuited conductive bars or coils.
  4. The induced voltage in the rotor windings creates a magnetic field in the rotor.
  5. The magnetic field of the rotor interacts with the rotating magnetic field of the stator, resulting in a torque force.
  6. The torque force causes the rotor to rotate, transferring mechanical energy to the connected shaft.
  7. The rotation of the rotor continues as long as the AC power supply is provided to the stator windings.

This basic working principle is applicable to various types of AC motors, including induction motors and synchronous motors. However, the specific construction and design of the motor may vary depending on the type and intended application.

China wholesaler Yvf/Yvp Series 5.5kw 6pole 50Hz 60Hz 380V Variable Frequency Speed AC Motor 3-Phase Asynchronous Motor Dynamo Motor   with high quality China wholesaler Yvf/Yvp Series 5.5kw 6pole 50Hz 60Hz 380V Variable Frequency Speed AC Motor 3-Phase Asynchronous Motor Dynamo Motor   with high quality
editor by CX 2024-05-15

China manufacturer 220V 1 Phase Squirrel Cage AC Asynchronous Induction Electric Motor vacuum pump for ac

Product Description

220V 1 Phase Squirrel Cage AC Asynchronous Induction Electric Motor

Product Description

PRODUCT OVERVIEW
YC series motors are totally enclosed and fan-cooled, and their installation method conforms to the standards of the International Electrotechnical Commission (IEC). The output power of 3HP and below adopts capacitor start, and the output power of 4HP and above adopts capacitor start and operation. This series of motors has the characteristics of small starting current, large starting torque, and large rotation speed. It is used to drive small lathe water pumps. It is especially suitable for family workshops with only single-phase power supply.
 

Product Parameters

  

Ambient temperature  -15ºC≤0≤40ºC
Altitude Not exceeding 1000m
Rated voltage 220V
Rated frequency 50Hz,60Hz
Protection class IP44, IP54
Insulation class B, F
Cooling method ICO141
Duty S1(continuous)

OVERALL & INSTALLTION DIEMSIONS
TECHNICAL DATA:

Company Profile

ZHangZhouG CHINAMFG PUMP INDUSTRY Co., Ltd is a professional manufacturer and exporter of water pumps with over 15 years and specialized in manufacturing vortex pumps, centrifugal pumps, Jet pumps, sel-priming pumps, submersible pumps, screw pumps, sewage pumps, deep well pumps, oil pumps,. They are widely used for domestic appliance, agriculture irrigation, building construction, water boosting and transportation, waste water disposal etc.

With its sound and rapid growth, CHINAMFG Pump has obtained Certificate of ISO9001: 2000 quality management system, CE certificate and passed the SGS Inspection and BV inspection.

The pumps have been sold and greatly welcomed in the markets of south-east Asia, the Middle East, Africa, East Europe and South America because of its reliable quality and competitive prices.

Professional, Experienced, Trusted, Reliable are FLORANK’s concept and philosophy.

FAQ

Q1:Could I put my own logo on it ?
A:Sure,We accept OEM and ODM .

Q2: What is your sample policy ?
A: We can supply the sample ,but the customers have to pay the shipping cost .

Q3:Could I produce according to the samples?
A:Of course .we can produce by your samples or technical drawing,We can build the molds.

Q4:How long is production time ?
A: Based on the quantities ,sample order 7-15 days,mass order 30-60days .

Q5:What is the standard package ?
A: Carton or wooden box.

Q6:Do you test all your goods before delivery ?
A:Of course,we have 100% test before delivery .

Why Partner With us
Not Your Competitor
We do not compete with our customers on a B2C basis.You won’t find us selling directly on Amazon or anywhere else our customers are.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Single-Phase
Function: Driving, Control
Casing Protection: Closed Type
Number of Poles: 4
Samples:
US$ 60/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

induction motor

What factors should be considered when selecting an AC motor for a particular application?

When selecting an AC motor for a particular application, several factors need to be considered to ensure the motor meets the requirements and performs optimally. Here are the key factors to consider:

  1. Power Requirements: Determine the power requirements of the application, including the required torque and speed. The motor should have adequate power output to meet the demands of the specific task. Consider factors such as starting torque, running torque, and speed range to ensure the motor can handle the load effectively.
  2. Motor Type: There are different types of AC motors, including induction motors, synchronous motors, and brushless DC motors. Each type has its own characteristics and advantages. Consider the application’s requirements and factors such as speed control, efficiency, and starting torque to determine the most suitable motor type.
  3. Environmental Conditions: Assess the environmental conditions in which the motor will operate. Factors such as temperature, humidity, dust, and vibration levels can impact motor performance and longevity. Choose a motor that is designed to withstand the specific environmental conditions of the application.
  4. Size and Space Constraints: Consider the available space for motor installation. Ensure that the physical dimensions of the motor, including its length, diameter, and mounting arrangement, are compatible with the available space. Additionally, consider the weight of the motor if it needs to be mounted or transported.
  5. Efficiency: Energy efficiency is an important consideration, as it can impact operational costs and environmental sustainability. Look for motors with high efficiency ratings, which indicate that they convert electrical energy into mechanical energy with minimal energy loss. Energy-efficient motors can lead to cost savings and reduced environmental impact over the motor’s lifespan.
  6. Control and Speed Requirements: Determine if the application requires precise speed control or if a fixed speed motor is sufficient. If variable speed control is needed, consider motors that can be easily controlled using variable frequency drives (VFDs) or other speed control mechanisms. For applications that require high-speed operation, select a motor that can achieve the desired speed range.
  7. Maintenance and Serviceability: Assess the maintenance requirements and serviceability of the motor. Consider factors such as the accessibility of motor components, ease of maintenance, availability of spare parts, and the manufacturer’s reputation for reliability and customer support. A motor that is easy to maintain and service can help minimize downtime and repair costs.
  8. Budget: Consider the budget constraints for the motor selection. Balance the desired features and performance with the available budget. In some cases, investing in a higher quality, more efficient motor upfront can lead to long-term cost savings due to reduced energy consumption and maintenance requirements.

By carefully considering these factors, it is possible to select an AC motor that aligns with the specific requirements of the application, ensuring optimal performance, efficiency, and reliability.

induction motor

Can you explain the difference between single-phase and three-phase AC motors?

In the realm of AC motors, there are two primary types: single-phase and three-phase motors. These motors differ in their construction, operation, and applications. Let’s explore the differences between single-phase and three-phase AC motors:

  • Number of Power Phases: The fundamental distinction between single-phase and three-phase motors lies in the number of power phases they require. Single-phase motors operate using a single alternating current (AC) power phase, while three-phase motors require three distinct AC power phases, typically referred to as phase A, phase B, and phase C.
  • Power Supply: Single-phase motors are commonly connected to standard residential or commercial single-phase power supplies. These power supplies deliver a voltage with a sinusoidal waveform, oscillating between positive and negative cycles. In contrast, three-phase motors require a dedicated three-phase power supply, typically found in industrial or commercial settings. Three-phase power supplies deliver three separate sinusoidal waveforms with a specific phase shift between them, resulting in a more balanced and efficient power delivery system.
  • Starting Mechanism: Single-phase motors often rely on auxiliary components, such as capacitors or starting windings, to initiate rotation. These components help create a rotating magnetic field necessary for motor startup. Once the motor reaches a certain speed, these auxiliary components may be disconnected or deactivated. Three-phase motors, on the other hand, typically do not require additional starting mechanisms. The three-phase power supply inherently generates a rotating magnetic field, enabling self-starting capability.
  • Power and Torque Output: Three-phase motors generally offer higher power and torque output compared to single-phase motors. The balanced nature of three-phase power supply allows for a more efficient distribution of power across the motor windings, resulting in increased performance capabilities. Three-phase motors are commonly used in applications requiring high power demands, such as industrial machinery, pumps, compressors, and heavy-duty equipment. Single-phase motors, with their lower power output, are often used in residential appliances, small commercial applications, and light-duty machinery.
  • Efficiency and Smoothness of Operation: Three-phase motors typically exhibit higher efficiency and smoother operation than single-phase motors. The balanced three-phase power supply helps reduce electrical losses and provides a more constant and uniform torque output. This results in improved motor efficiency, reduced vibration, and smoother rotation. Single-phase motors, due to their unbalanced power supply, may experience more pronounced torque variations and slightly lower efficiency.
  • Application Suitability: The choice between single-phase and three-phase motors depends on the specific application requirements. Single-phase motors are suitable for powering smaller appliances, such as fans, pumps, household appliances, and small tools. They are commonly used in residential settings where single-phase power is readily available. Three-phase motors are well-suited for industrial and commercial applications that demand higher power levels and continuous operation, including large machinery, conveyors, elevators, air conditioning systems, and industrial pumps.

It’s important to note that while single-phase and three-phase motors have distinct characteristics, there are also hybrid motor designs, such as dual-voltage motors or capacitor-start induction-run (CSIR) motors, which aim to bridge the gap between the two types and offer flexibility in certain applications.

When selecting an AC motor, it is crucial to consider the specific power requirements, available power supply, and intended application to determine whether a single-phase or three-phase motor is most suitable for the task at hand.

induction motor

What is an AC motor, and how does it differ from a DC motor?

An AC motor, also known as an alternating current motor, is a type of electric motor that operates on alternating current. It converts electrical energy into mechanical energy through the interaction of magnetic fields. AC motors are widely used in various applications, ranging from household appliances to industrial machinery. Here’s a detailed explanation of what an AC motor is and how it differs from a DC motor:

AC Motor:

An AC motor consists of two main components: the stator and the rotor. The stator is the stationary part of the motor and contains the stator windings. These windings are typically made of copper wire and are arranged in specific configurations to create a rotating magnetic field when energized by an alternating current. The rotor, on the other hand, is the rotating part of the motor and is typically made of laminated steel cores with conducting bars or coils. The rotor windings are connected to a shaft, and their interaction with the rotating magnetic field produced by the stator causes the rotor to rotate.

The operation of an AC motor is based on the principles of electromagnetic induction. When the stator windings are energized with an AC power supply, the changing magnetic field induces a voltage in the rotor windings, which in turn creates a magnetic field. The interaction between the rotating magnetic field of the stator and the magnetic field of the rotor produces a torque, causing the rotor to rotate. The speed of rotation depends on the frequency of the AC power supply and the number of poles in the motor.

DC Motor:

A DC motor, also known as a direct current motor, operates on direct current. Unlike an AC motor, which relies on the interaction of magnetic fields to generate torque, a DC motor uses the principle of commutation to produce rotational motion. A DC motor consists of a stator and a rotor, similar to an AC motor. The stator contains the stator windings, while the rotor consists of a rotating armature with coils or permanent magnets.

In a DC motor, when a direct current is applied to the stator windings, a magnetic field is created. The rotor, either through the use of brushes and a commutator or electronic commutation, aligns itself with the magnetic field and begins to rotate. The direction of the current in the rotor windings is continuously reversed to ensure continuous rotation. The speed of a DC motor can be controlled by adjusting the voltage applied to the motor or by using electronic speed control methods.

Differences:

The main differences between AC motors and DC motors are as follows:

  • Power Source: AC motors operate on alternating current, which is the standard power supply in most residential and commercial buildings. DC motors, on the other hand, require direct current and typically require a power supply that converts AC to DC.
  • Construction: AC motors and DC motors have similar construction with stators and rotors, but the design and arrangement of the windings differ. AC motors generally have three-phase windings, while DC motors can have either armature windings or permanent magnets.
  • Speed Control: AC motors typically operate at fixed speeds determined by the frequency of the power supply and the number of poles. DC motors, on the other hand, offer more flexibility in speed control and can be easily adjusted over a wide range of speeds.
  • Efficiency: AC motors are generally more efficient than DC motors. AC motors can achieve higher power densities and are often more suitable for high-power applications. DC motors, however, offer better speed control and are commonly used in applications that require precise speed regulation.
  • Applications: AC motors are widely used in applications such as industrial machinery, HVAC systems, pumps, and compressors. DC motors find applications in robotics, electric vehicles, computer disk drives, and small appliances.

In conclusion, AC motors and DC motors differ in their power source, construction, speed control, efficiency, and applications. AC motors rely on the interaction of magnetic fields and operate on alternating current, while DC motors use commutation and operate on direct current. Each type of motor has its advantages and is suited for different applications based on factors such as power requirements, speed control needs, and efficiency considerations.

China manufacturer 220V 1 Phase Squirrel Cage AC Asynchronous Induction Electric Motor   vacuum pump for ac	China manufacturer 220V 1 Phase Squirrel Cage AC Asynchronous Induction Electric Motor   vacuum pump for ac
editor by CX 2024-05-14

China Good quality Ms Series Aluminum Housing Three -Phase Asynchronous AC Motor Ys/Ms160m2-2 with Hot selling

Product Description

Product Parameters

Ms series aluminum housing 3 phase asychronous motor ,with latest design in entirely ,are made of selected quality materials and conform to IEC standard.

 MS motor have good performance ,safety and reliable operation ,nice appearance ,and can be maintained very conveniently ,while with low noise ,little vibration and at the same time light weight and simple construction .these motors can be used for general drive 

Ambient Temperature

-15ºC≤0≤40ºC

Altitude

Not exceeding 1000 CHINAMFG

Rated Voltage

380V±5%,220V±5%

Protection Type

IP44/IP54

Connection

Y Start-Connection for 3 Kw and below

Y Date-Connection for 3 Kw or more

Cooling Type 

IC0141

Insulation Class

Class B/Class F/Class H

Rated Frequency

50Hz/60Hz

Duty/Rating

Continuous(S1) Or customized 

The terminal box IP55

Model Rated power Current Power factor Efficiency speed Locked Rotor
 torque
Locked Rot or Current Breskdown Torque
Type (KW) (A) (cosΦ) (η%) (r/min) Tst
TN
Ist
TN
Tmax
TN
synchronous speed 3000r/min(380V 50HZ)
YS/MS561-2 0.09 0.29 0.77 62 2750 2.2 5.2 2.1
YS/MS562-2 0.12 0.37 0.78 64 2750 2.2 5.2 2.1
YS/MS631-2 0.18 0.53 0.8 65 2780 2.3 5.5 2.3
YS/MS632-2 0.25 0.69 0.81 68 2780 2.3 5.5 2.3
YS/MS711-2 0.37 1.01 0.81 69 2800 2.2 6.1 2.3
YS/MS712-2 0.55 1.38 0.82 74 2800 2.3 6.1 2.3
YS/MS801-2 0.75 1.77 0.83 75 2825 2.3 6.1 2.2
YS/MS802-2 1.1 2.46 0.84 76.2 2825 2.3 6.9 2.2
YS/MS90S-2 1.5 3.46 0.84 78.5 2840 2.3 7.0  2.2
YS/MS90L-2 2.2 4.85 0.85 81 2840 2.3 7.0  2.2
YS/MS100L-2 3 6.34 0.87 82.6 2880 2.3 7.5 2.2
YS/MS112M-2 4 8.20  0.88 84.2 2890 2.3 7.5 2.2
YS/MS132S1-2 5.5 11.1 0.88 85.7 2900 2.3 7.5 2.2
YS/MS132S2-2 7.5 14.9 0.88 87 2900 2.3 7.5 2.2
YS/MS160M1-2 11 21.2 0.89 88.4 2947 2.3 7.5 2.2
YS/MS160M2-2 15 28.6 0.89 89.4 2947 2.3 7.5 2.2
YS/MS160L-2 18.5 34.7 0.90  90 2947 2.3 7.5 2.2
synchronous speed 1500 r/min(380V 50HZ)
YS/MS561-4 0.06 0.23 0.70  56 1300 2.1 4.0  2.0 
YS/MS562-4 0.09 0.33 0.72 58 1300 2.1 4.0  2.0 
YS/MS631-4 0.12 0.44 0.72 57 1330 2.2 4.4 2.1
YS/MS632-4 0.18 0.62 0.73 60 1330 2.2 4.4 2.1
YS/MS711-4 0.25 0.79 0.74 65 1360 2.2 5.2 2.1
YS/MS712-4 0.37 1.12 0.75 67 1360 2.2 5.2 2.1
YS/MS801-4 0.55 1.52 0.75 71 1380 2.3 5.2 2.4
YS/MS802-4 0.75 1.95 0.76 73 1380 2.3 6.0  2.3
YS/MS90S-4 1.1 2.85 0.77 76.2 1390 2.3 6.0  2.3
YS/MS90L-4 1.5 3.72 0.78 78.2 1390 2.3 6.0  2.3
YS/MS100L1-4 2.2 5.09 0.81 81 1410 2.3 7.0  2.3
YS/MS100L2-4 3 6.78 0.82 82.6 1410 2.3 7.0  2.3
YS/MS112M-4 4 8.8 0.82 84.6 1435 2.3 7.0  2.3
YS/MS132S1-4 5.5 11.7 0.83 85.7 1445 2.3 7.0  2.3
YS/MS132S2-4 7.5 15.6 0.84 87 1445 2.3 7.0  2.3
YS/MS160M-4 11 22.5 0.84 88.4 1460 2.2 7.0  2.3
YS/MS160L-4 15 30.0  0.85 89.4 1460 2.2 7.5 2.3
                 
Model Rated power Current Power factor Efficiency speed Locked Rotor
 torque
Locked Rot or Current Breskdown Torque
Type (KW) (A) (cosΦ) (η%) (r/min) Tst
TN
Ist
TN
Tmax
TN
synchronous speed 1000 r/min(380V 50HZ)
YS/MS711-6 0.18 0.74 0.66 56 900 2.0  4.0  1.9
YS/MS712-6 0.25 0.95 0.68 59 900 2.0  4.0  1.9
YS/MS801-6 0.37 1.23 0.70  62 900 2.0  4.7 1.8
YS/MS802-6 0.55 1.70  0.72 65 900 2.1 4.7 1.8
YS/MS90S-6 0.75 2.29 0.72 69 900 2.1 5.3 2.0 
YS/MS90L-6 1.1 3.18 0.73 72 910 2.1 5.5 2.0 
YS/MS100L-6 1.5 4.0  0.76 76 910 2.1 5.5 2.0 
YS/MS112M-6 2.2 5.6 0.76 79 940 2.1 6.5 2.0 
YS/MS132S-6 3 7.40  0.76 81 940 2.1 6.5 2.1
YS/MS132M1-6 4 9.5 0.76 82 960 2.1 6.5 2.1
YS/MS132M2-6 5.5 12.6 0.77 84 960 2.1 6.5 2.1
YS/MS160M-6 7.5 17.2 0.77 86 960 2.0  6.5 2.1
YS/MS160L-6 11 24.5 0.78 87.5 960 2.0  6.5 2.1
synchronous speed 750 r/min(380V 50HZ)
YS/MS801-8 0.18 0.83 0.61 51 630 1.9 3.3 1.8
YS/MS802-8 0.25 1.10  0.61 54 640 1.9 3.3 1.8
YS/MS90S-8 0.37 1.49 0.61 62 660 1.9 4.0  1.8
YS/MS90L-8 0.55 2.17 0.61 63 660 2.0  4.0  1.8
YS/MS100L1-8 0.75 2.43 0.67 70 690 2.0  4.0  1.8
YS/MS100L2-8 1.1 3.36 0.69 72 690 2.0  5.0  1.8
YS/MS112M-8 1.5 4.40  0.70  74 680 2.0  5.0  1.8
YS/MS132S-8 2.2 6.00  0.71 79 710 2.0  6.5 1.8
YS/MS132M-8 3 7.80  0.73 80 710 2.0  6.5 1.8
YS/MS160M1-8 4 10.3 0.73 81 720 2.0  6.6  2.0 
YS/MS160M2-8 5.5 13.6 0.74 83 720 2.0  6.6  2.0 
YS/MS160L-8 7.5 17.8 0.75 85.5 720 2.0  6.6 2.0 

Detailed Photos

FAQ

Q: Where is Your factory?
A: HangZhou city, ZHangZhoug Province.
 
Q: Do you accept OEM/ODM service?
A: Yes, avaliable.
 
Q: Are you trading company or manufacturer?
A: We are a manufacturer.
 
Q: What about the shipment?
A: By sea, By air and By express delivery.
 
Q: What is the delivery time?
A: It depends on the order quantity, usually 35days after confirmation.
 
Q: Can I buy different products in 1 container?
A: Yes, but no more than 5 models.
 
Q: What is the warranty time?
A: One year.

Q: Can you offer the sample?
A: Of course we can.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial, Household Appliances, Power Tools, Car
Operating Speed: Constant Speed
Number of Stator: Three-Phase
Samples:
US$ 273/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

induction motor

Are there environmental considerations associated with the use of AC motors?

Yes, there are several environmental considerations associated with the use of AC motors. These considerations are primarily related to energy consumption, greenhouse gas emissions, and the disposal of motors at the end of their life cycle. Let’s explore these environmental considerations in detail:

  • Energy Efficiency: AC motors can have varying levels of energy efficiency, which directly impacts their environmental impact. Motors with higher efficiency convert a larger percentage of electrical energy into useful mechanical work, resulting in reduced energy consumption. By selecting and using high-efficiency AC motors, energy usage can be minimized, leading to lower greenhouse gas emissions and reduced reliance on fossil fuels for electricity generation.
  • Greenhouse Gas Emissions: The electricity consumed by AC motors is often produced by power plants that burn fossil fuels, such as coal, natural gas, or oil. The generation of electricity from these fossil fuels releases greenhouse gases, contributing to climate change. By employing energy-efficient motors and optimizing motor systems, businesses and individuals can reduce their electricity demand, leading to lower greenhouse gas emissions and a smaller carbon footprint.
  • Motor Disposal and Recycling: AC motors contain various materials, including metals, plastics, and electrical components. At the end of their life cycle, proper disposal or recycling is important to minimize their environmental impact. Some components, such as copper windings and steel casings, can be recycled, reducing the need for new raw materials and energy-intensive manufacturing processes. It is crucial to follow local regulations and guidelines for the disposal and recycling of motors to prevent environmental pollution and promote resource conservation.
  • Manufacturing and Production: The manufacturing and production processes associated with AC motors can have environmental implications. The extraction and processing of raw materials, such as metals and plastics, can result in habitat destruction, energy consumption, and greenhouse gas emissions. Additionally, the manufacturing processes themselves can generate waste and pollutants. Motor manufacturers can mitigate these environmental impacts by adopting sustainable practices, using recycled materials, reducing waste generation, and implementing energy-efficient production methods.
  • Life Cycle Assessment: Conducting a life cycle assessment (LCA) of AC motors can provide a holistic view of their environmental impact. An LCA considers the environmental aspects associated with the entire life cycle of the motor, including raw material extraction, manufacturing, transportation, use, and end-of-life disposal or recycling. By analyzing the different stages of the motor’s life cycle, stakeholders can identify opportunities for improvement, such as optimizing energy efficiency, reducing emissions, and implementing sustainable practices.

To address these environmental considerations, governments, organizations, and industry standards bodies have developed regulations and guidelines to promote energy efficiency and reduce the environmental impact of AC motors. These include efficiency standards, labeling programs, and incentives for the use of high-efficiency motors. Additionally, initiatives promoting motor system optimization, such as proper motor sizing, maintenance, and control, can further enhance energy efficiency and minimize environmental impact.

In summary, the environmental considerations associated with the use of AC motors include energy efficiency, greenhouse gas emissions, motor disposal and recycling, manufacturing processes, and life cycle assessment. By prioritizing energy efficiency, proper disposal, recycling, and sustainable manufacturing practices, the environmental impact of AC motors can be minimized, contributing to a more sustainable and environmentally conscious approach to motor usage.

induction motor

What are the safety considerations when working with or around AC motors?

Working with or around AC motors requires careful attention to safety to prevent accidents, injuries, and electrical hazards. Here are some important safety considerations to keep in mind:

  • Electrical Hazards: AC motors operate on high voltage electrical systems, which pose a significant electrical hazard. It is essential to follow proper lockout/tagout procedures when working on motors to ensure that they are de-energized and cannot accidentally start up. Only qualified personnel should perform electrical work on motors, and they should use appropriate personal protective equipment (PPE), such as insulated gloves, safety glasses, and arc flash protection, to protect themselves from electrical shocks and arc flash incidents.
  • Mechanical Hazards: AC motors often drive mechanical equipment, such as pumps, fans, or conveyors, which can present mechanical hazards. When working on or near motors, it is crucial to be aware of rotating parts, belts, pulleys, or couplings that can cause entanglement or crushing injuries. Guards and safety barriers should be in place to prevent accidental contact with moving parts, and proper machine guarding principles should be followed. Lockout/tagout procedures should also be applied to the associated mechanical equipment to ensure it is safely de-energized during maintenance or repair.
  • Fire and Thermal Hazards: AC motors can generate heat during operation, and in some cases, excessive heat can pose a fire hazard. It is important to ensure that motors are adequately ventilated to dissipate heat and prevent overheating. Motor enclosures and cooling systems should be inspected regularly to ensure proper functioning. Additionally, combustible materials should be kept away from motors to reduce the risk of fire. If a motor shows signs of overheating or emits a burning smell, it should be immediately shut down and inspected by a qualified professional.
  • Proper Installation and Grounding: AC motors should be installed and grounded correctly to ensure electrical safety. Motors should be installed according to manufacturer guidelines, including proper alignment, mounting, and connection of electrical cables. Adequate grounding is essential to prevent electrical shocks and ensure the safe dissipation of fault currents. Grounding conductors, such as grounding rods or grounding straps, should be properly installed and regularly inspected to maintain their integrity.
  • Safe Handling and Lifting: AC motors can be heavy and require proper handling and lifting techniques to prevent musculoskeletal injuries. When moving or lifting motors, equipment such as cranes, hoists, or forklifts should be used, and personnel should be trained in safe lifting practices. It is important to avoid overexertion and use proper lifting tools, such as slings or lifting straps, to distribute the weight evenly and prevent strain or injury.
  • Training and Awareness: Proper training and awareness are critical for working safely with or around AC motors. Workers should receive training on electrical safety, lockout/tagout procedures, personal protective equipment usage, and safe work practices. They should be familiar with the specific hazards associated with AC motors and understand the appropriate safety precautions to take. Regular safety meetings and reminders can help reinforce safe practices and keep safety at the forefront of everyone’s minds.

It is important to note that the safety considerations mentioned above are general guidelines. Specific safety requirements may vary depending on the motor size, voltage, and the specific workplace regulations and standards in place. It is crucial to consult relevant safety codes, regulations, and industry best practices to ensure compliance and maintain a safe working environment when working with or around AC motors.

induction motor

How does the speed control mechanism work in AC motors?

The speed control mechanism in AC motors varies depending on the type of motor. Here, we will discuss the speed control methods used in two common types of AC motors: induction motors and synchronous motors.

Speed Control in Induction Motors:

Induction motors are typically designed to operate at a constant speed determined by the frequency of the AC power supply and the number of motor poles. However, there are several methods for controlling the speed of induction motors:

  1. Varying the Frequency: By varying the frequency of the AC power supply, the speed of an induction motor can be adjusted. This method is known as variable frequency drive (VFD) control. VFDs convert the incoming AC power supply into a variable frequency and voltage output, allowing precise control of motor speed. This method is commonly used in industrial applications where speed control is crucial, such as conveyors, pumps, and fans.
  2. Changing the Number of Stator Poles: The speed of an induction motor is inversely proportional to the number of stator poles. By changing the connections of the stator windings or using a motor with a different pole configuration, the speed can be adjusted. However, this method is less commonly used and is typically employed in specialized applications.
  3. Adding External Resistance: In some cases, external resistance can be added to the rotor circuit of an induction motor to control its speed. This method, known as rotor resistance control, involves inserting resistors in series with the rotor windings. By varying the resistance, the rotor current and torque can be adjusted, resulting in speed control. However, this method is less efficient and is mainly used in specific applications where precise control is not required.

Speed Control in Synchronous Motors:

Synchronous motors offer more precise speed control compared to induction motors due to their inherent synchronous operation. The following methods are commonly used for speed control in synchronous motors:

  1. Adjusting the AC Power Frequency: Similar to induction motors, changing the frequency of the AC power supply can control the speed of synchronous motors. By adjusting the power frequency, the synchronous speed of the motor can be altered. This method is often used in applications where precise speed control is required, such as industrial machinery and processes.
  2. Using a Variable Frequency Drive: Variable frequency drives (VFDs) can also be used to control the speed of synchronous motors. By converting the incoming AC power supply into a variable frequency and voltage output, VFDs can adjust the motor speed with high accuracy and efficiency.
  3. DC Field Control: In some synchronous motors, the rotor field is supplied by a direct current (DC) source, allowing for precise control over the motor’s speed. By adjusting the DC field current, the magnetic field strength and speed of the motor can be controlled. This method is commonly used in applications that require fine-tuned speed control, such as industrial processes and high-performance machinery.

These methods provide different ways to control the speed of AC motors, allowing for flexibility and adaptability in various applications. The choice of speed control mechanism depends on factors such as the motor type, desired speed range, accuracy requirements, efficiency considerations, and cost constraints.

China Good quality Ms Series Aluminum Housing Three -Phase Asynchronous AC Motor Ys/Ms160m2-2   with Hot selling	China Good quality Ms Series Aluminum Housing Three -Phase Asynchronous AC Motor Ys/Ms160m2-2   with Hot selling
editor by CX 2024-05-14

China manufacturer CHINAMFG 1 2HP Single Phase Squirrel Cage AC Asynchronous Induction Electric Motor vacuum pump oil

Product Description

Product Description

General Description
1.ML series single phase aluminum frame AC motors which adopting the latest design and high quality material are conform to the IEC standard.
2.The efficiency of motor meets EFF2 standard in Europe, and EFF1 standard if request.

3.High efficiency, energy saving, low noise, little vibration, light weight, convenient operation and maintenance are all it’s strengths.

 

Power: 0.18kw-5.5kw Voltage: 220/230V( can can done as your need)
Frequency: 50/60hz Enamelled Wire: Copper Wire (Can Done Aluminum wire as Your Need)
Insulation Class: F Mounting Way: B3 Foot /B5 Flange /B35 Foot and Flange/B14 flange/B34 foot and flange 
Protection Grade: IP55 motor body : aluminum 

 

Detailed Photos

Product Parameters

Certifications

Packaging & Shipping

Company Profile

FAQ

FAQ
1, Q:what’s your MOQ for ac synchronous motor ?
A: 5pc is ok for each type electric motor 

2, Q: What about your warranty for your 3 phase  motor?
A: 1 year ,but except man-made destroyed

3, Q: which payment way you can accept ?
A: TT, western union .

4, Q: how about your payment way ?
A: 100%payment in advanced less $5000 ,30% payment in advanced payment , 70% payment before sending over $5000.

5, Q: how about your packing of  induction motor ?
A: carton or plywood case ,if less 1 container , we can pack all goods with pallet for small size motor

6, Q: What information should be given, if I buy electric ac motor from you ?
A: rated power, speed or pole ,type ,voltage , mounting way , quantity , if more is better.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Operating Speed: Constant Speed
Number of Stator: Single-Phase
Species: Y, Y2 Series Three-Phase
Rotor Structure: Squirrel-Cage
Casing Protection: Closed Type
Customization:
Available

|

induction motor

How do induction motors contribute to the efficiency of industrial processes?

Induction motors play a crucial role in enhancing the efficiency of industrial processes. Here are some ways in which induction motors contribute to industrial process efficiency:

  • High Energy Conversion:
    • Induction motors are known for their high energy conversion efficiency.
    • They can convert electrical energy into mechanical energy with minimal energy losses.
    • This high efficiency helps reduce energy consumption, resulting in cost savings and improved overall process efficiency.
  • Wide Range of Power Ratings:
    • Induction motors are available in a wide range of power ratings, allowing them to be used in various industrial applications.
    • From small motors used in pumps and fans to large motors driving heavy machinery, induction motors provide the necessary power for different process requirements.
  • Variable Speed Control:
    • Induction motors can be controlled to operate at different speeds, offering flexibility in industrial processes.
    • By adjusting the motor’s frequency or using variable frequency drives (VFDs), the motor’s speed can be optimized to match the specific process requirements.
    • This speed control capability allows for fine-tuning of processes, reducing energy waste and improving overall efficiency.
  • Reliability and Durability:
    • Induction motors are known for their robust construction and reliability.
    • They can operate under demanding industrial conditions with minimal maintenance requirements.
    • This reliability ensures continuous operation of industrial processes, minimizing downtime and maximizing productivity.
  • Suitable for Various Loads:
    • Induction motors are well-suited for a wide range of loads encountered in industrial processes.
    • They can handle both light loads and heavy loads with ease.
    • Whether it’s driving conveyor belts, pumps, compressors, or other equipment, induction motors provide the necessary torque and power to meet the demands of industrial processes.
  • Cost-Effective Solution:
    • Induction motors offer a cost-effective solution for industrial processes.
    • They are widely available, competitively priced, and have a long operational life.
    • Their high efficiency helps reduce energy costs, further contributing to cost savings in industrial operations.
  • Compatibility with Power Grids:
    • Induction motors are designed to operate efficiently with the power grids commonly found in industrial settings.
    • They can be easily connected to the electrical supply grid without the need for complex power conditioning or specialized equipment.
    • This compatibility ensures seamless integration into existing industrial infrastructure, facilitating the efficiency of industrial processes.

Overall, induction motors provide a reliable, flexible, and cost-effective solution for industrial processes. Their high energy conversion efficiency, variable speed control, durability, and compatibility with different loads contribute to improved efficiency, reduced energy consumption, and enhanced productivity in industrial operations.

induction motor

What advancements in induction motor technology have improved energy efficiency?

Advancements in induction motor technology have led to significant improvements in energy efficiency. These advancements have been driven by various factors, including stricter energy regulations, environmental concerns, and the need for cost-effective operation. Here’s a detailed explanation of the key advancements that have improved energy efficiency in induction motors:

High-Efficiency Motor Designs:

Manufacturers have developed high-efficiency designs for induction motors that minimize energy losses and maximize output. These designs incorporate improved core materials, optimized winding configurations, and reduced air gaps, resulting in reduced core losses and improved magnetic coupling. High-efficiency motor designs can achieve higher efficiency levels compared to traditional motor designs, leading to energy savings in various applications.

Premium Efficiency Standards:

Introduction of premium efficiency standards by regulatory bodies and organizations has played a significant role in improving the energy efficiency of induction motors. These standards define minimum efficiency requirements for motors in specific power ranges. Induction motors meeting premium efficiency standards are designed to operate at higher efficiency levels, reducing energy consumption and promoting the adoption of energy-efficient motor technologies.

Improved Insulation Systems:

Advancements in insulation materials and systems have contributed to improved energy efficiency in induction motors. Enhanced insulation systems help reduce electrical losses and improve the motor’s overall efficiency. Newer insulation materials offer better thermal conductivity, improved dielectric strength, and increased resistance to electrical stress, resulting in reduced heat generation and improved motor performance.

Variable Frequency Drives (VFDs):

The widespread adoption of Variable Frequency Drives (VFDs) has greatly enhanced the energy efficiency of induction motors. VFDs enable precise control of motor speed by adjusting the frequency and voltage supplied to the motor. By matching the motor’s speed to the actual load requirements, VFDs eliminate the energy wastage associated with fixed-speed motors running at constant speed. VFDs also provide additional features such as soft-start and dynamic braking, further improving energy efficiency.

Advanced Motor Control Techniques:

Advanced motor control techniques, such as vector control or field-oriented control (FOC), have been developed to improve the energy efficiency of induction motors. These control techniques allow for precise control of motor torque and speed, even under varying load conditions. By optimizing motor control algorithms and adjusting parameters in real-time, these techniques minimize energy losses and maximize motor efficiency, particularly in applications with fluctuating loads.

Integration with Automation Systems:

Integration of induction motors with advanced control systems and automation technologies has also contributed to improved energy efficiency. By connecting motors to Programmable Logic Controllers (PLCs), Supervisory Control and Data Acquisition (SCADA) systems, or Industrial Internet of Things (IIoT) platforms, manufacturers can implement energy management strategies, perform real-time monitoring, and optimize motor operation based on actual demand. This integration enables energy-efficient operation and reduces unnecessary energy consumption.

Efficient Cooling Systems:

Advancements in cooling systems for induction motors have also played a role in improving energy efficiency. Efficient cooling mechanisms, such as improved fan designs, optimized airflow paths, and intelligent temperature monitoring systems, help maintain the motor’s temperature within the optimal range. By preventing overheating and minimizing thermal losses, these cooling systems contribute to improved motor efficiency and extended motor life.

In conclusion, several advancements in induction motor technology have led to improved energy efficiency. High-efficiency motor designs, premium efficiency standards, improved insulation systems, Variable Frequency Drives (VFDs), advanced motor control techniques, integration with automation systems, and efficient cooling systems are among the key advancements that have significantly enhanced the energy efficiency of induction motors. These advancements promote sustainable and cost-effective operation, offering benefits such as reduced energy consumption, lower operating costs, and reduced environmental impact.

induction motor

What are the key components of a typical induction motor?

A typical induction motor consists of several key components that work together to generate motion and provide mechanical power. Here’s a detailed explanation of the key components:

  • Stator:
    • The stator is the stationary part of the induction motor. It is made up of a cylindrical core, typically constructed from laminated steel sheets, which provides a low reluctance path for the magnetic flux.
    • The stator core contains slots that hold the stator windings, which are typically made of copper or aluminum conductors. These windings are arranged in such a way that they produce a rotating magnetic field when energized by an AC power supply.
  • Rotor:
    • The rotor is the rotating part of the induction motor. It is also constructed from laminated steel sheets to reduce eddy current losses.
    • There are two common types of rotors used in induction motors: squirrel cage rotor and wound rotor.
    • In a squirrel cage rotor, which is the most common type, the rotor consists of short-circuited conductive bars or loops that are typically made of aluminum or copper. The rotor bars are permanently shorted at the ends by conducting end rings.
    • In a wound rotor, the rotor windings are not short-circuited and are instead connected to external resistors or other control devices. This type of rotor allows for external control of rotor impedance and provides additional flexibility for motor operation.
  • Bearings:
    • Bearings are used to support and allow the rotation of the rotor within the stator. They provide low-friction surfaces that reduce wear and enable smooth operation.
    • Induction motors typically use rolling element bearings, such as ball bearings or roller bearings, to support the rotor shaft.
  • End Bells or End Shields:
    • The end bells, also known as end shields, are located at each end of the motor and provide mechanical support for the stator core and rotor shaft.
    • They also house the bearings and protect the motor’s internal components from dust, moisture, and other environmental factors.
  • Air Gap:
    • The air gap is the space between the stator and the rotor. It is a critical region where the magnetic field generated by the stator interacts with the conductors in the rotor, inducing voltage and current.
    • The size of the air gap affects the motor’s performance, efficiency, and torque production.
  • Terminal Box or Connection Box:
    • The terminal box is located on the outside of the motor and provides a connection point for the external power supply and control devices.
    • It houses the motor’s electrical terminals, which allow for the connection of the stator windings to the power supply and external control circuits.
  • Fan and Cooling Mechanism:
    • Many induction motors include a fan or cooling mechanism to dissipate heat generated during operation. This helps to prevent overheating and maintain optimal motor performance.
    • The fan may be mounted on the rotor shaft or the motor casing and helps to circulate air over the motor’s internal components, reducing temperature rise.

These are the key components of a typical induction motor. Their proper design, construction, and functioning are crucial for the efficient and reliable operation of the motor.

China manufacturer CHINAMFG 1 2HP Single Phase Squirrel Cage AC Asynchronous Induction Electric Motor   vacuum pump oil	China manufacturer CHINAMFG 1 2HP Single Phase Squirrel Cage AC Asynchronous Induction Electric Motor   vacuum pump oil
editor by CX 2024-05-14

China wholesaler Single-Phase Asynchronous Dual-Value AC High-Speed Motor vacuum pump and compressor

Product Description

 YL series double-value capacitor single-phase asynchronous motor eucalyptus national standard JB / T7588 requires an obituary manufacturing. It has excellent starting and operation performance, low noise, small vibration, compact structure, light weight and convenient maintenance characteristics. Widely used in air compressor, water pump and family workshop and other mechanical equipment as power.
Frame Size: 63-132    
Rated Voltage: 220V/110Vor request    
Rated Frequency: 50HZ,60HZ    
Rated Power: 0.18-7.5kW    
Insulation Class: F    
Altitude: ≤1000m    
Relative Humidity: ≤90%    
Protection Class: IP55    
Cooling Method: IC411    
Ambient Temperature: -15°-+40°C    
Duty: S1    
Mounting: B3,B5,B14,B35,B34    

Type Power
kW
Rated current
A
Speed
r/min
Eff
%
Power factor Locked rotor torque
Rated torque
Locked rotor current
A
YL711-2 0.37 2.2 2800 67 0.92 1.8 16
YL712-2 0.55 3.9 2800 70 0.92 1.8 21
YL801-2 0.75 4.9 2800 72 0.95 1.8 29
YL802-2 1.1 7.0 2800 75 0.95 1.8 40
YL90S-2 1.5 9.4 2800 76 0.95 1.7 55
YL90L-2 2.2 13.7 2800 77 0.95 1.7 80
YL100-2 3 18.2 2800 79 0.95 1.7 110
YL112M-2 4 26.6 2850 77 0.95 2.2 175
YL711-4 0.25 2.0 1400 62 0.82 1.8 12
YL712-4 0.37 2.8 1400 65 0.92 1.8 16
YL801-4 0.55 4.0 1400 68 0.92 1.8 21
YL802-4 0.75 5.1 1400 71 0.92 1.8 29
YL90-4 1.1 7.3 1400 73 0.95 1.7 40
YL90-4 1.5 9.7 1400 75 0.95 1.7 55
YL100L1-4 2.2 13.9 1400 76 0.95 1.7 80
YL112M-4 3 18.6 1400 77 0.95 1.7 110
YL132S-4 4 27.1 1400 78 0.77 2.2 175
YL132M-4 5.5 31.2 1400 78 0.79 2.2 200

Longran Electromechanical (ZHangZhoug) Co., Ltd. specializes in the production of various AC and DC motors. The main products are YE5 series high-efficiency three-phase asynchronous motors, YE4 series high-efficiency three-phase asynchronous motors, YL, ML series double-value capacitor motors, YC series capacitor starter motors, YY, MY series capacitor running motors, JY series motors, YS, MS series small power motors.JY, JW, JZ series, YEJ electromagnetic brake series, YVP, Y2VP, MLVP frequency conversion speed regulation series, DC brushless series, DC high pressure cleaning series, vehicle motor series, etc.The company has a strong technical force and has hired many senior engineers and a group of high-quality technical personnel.Modern equipment, high-tech management, and advanced testing capabilities are the guarantee of product quality. Quality creates excellence, and service embodies extraordinary. Joining hands with Longran to win the future is the CHINAMFG concept of Longran.In line with the tenet of “seeking development with science and technology, surviving with quality”, we are meticulous and keep improving” has always been our faithful commitment to serving customers. Our products sell well all over the country and are exported to Europe, South America, the Middle East and Southeast Asia. People from all walks of life are welcome. Letters from people to discuss business.

Longran’s main products:CE certificate/New National Standard GB/T28575-2012 1 Secondary Energy Efficiency/P55:

* YE4 Super High Eficiency Secondary Energy Efficiency Motor;
* YE3 Super High Efficiency Energy Saving Series Three -phase Asynchronous Motor;
* YE3 Super High Efficiency Energy Saving Aluminum Shell Motor;
* YVF2 Frequency conversion series 3 -phase asynchronous motor;
* YD2 series two-speed multi-speed 3 phase asynchronous motor;
* YEJ2 series electromagnetic brake three- phase asynchronous motor;
* YBX3 series flameproof three- phase asynchronous motor;
* YVFEJ2 series variable frequency brake three-phase asynchronous motor,
* YDEJ series Multi-speed electromagnetic brake three. phase asynchronous motor, oil pump motor,
* YL single-phase double-capacitor asynchronous motor,
* ML single-phase aluminum shell double capacitor asynchronous motor,
* YC single-phase iron shell asynchronous motor,
* YY single-phase single-capacitor aluminum shell motor,
* special motor for stone machinery and equipment, custom-made motors with special specifications for power
requirements, and motors with different frequencies and different pressures.
* The protection grades include IP55, IP66, etc. and various special motors derived from them.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial, Universal, Household Appliances, Power Tools, Car
Operating Speed: Constant Speed
Number of Stator: Single-Phase
Species: Yy
Rotor Structure: Winding Type
Casing Protection: Closed Type
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

induction motor

Can AC motors be used in both residential and commercial settings?

Yes, AC motors can be used in both residential and commercial settings. The versatility and wide range of applications of AC motors make them suitable for various environments and purposes.

In residential settings, AC motors are commonly found in household appliances such as refrigerators, air conditioners, washing machines, fans, and pumps. These motors are designed to meet the specific requirements of residential applications, providing reliable and efficient operation for everyday tasks. For example, air conditioners utilize AC motors to drive the compressor and fan, while washing machines use AC motors for agitating and spinning the drum.

In commercial settings, AC motors are extensively used in a wide range of applications across different industries. They power machinery, equipment, and systems that are crucial for commercial operations. Some common examples include:

  • Industrial machinery and manufacturing equipment: AC motors drive conveyor belts, pumps, compressors, mixers, fans, blowers, and other machinery used in manufacturing, production, and processing facilities.
  • HVAC systems: AC motors are used in commercial heating, ventilation, and air conditioning (HVAC) systems to drive fans, blowers, and pumps for air circulation, cooling, and heating.
  • Commercial refrigeration: AC motors are utilized in commercial refrigeration systems for powering compressors, condenser fans, and evaporator fans in supermarkets, restaurants, and cold storage facilities.
  • Office equipment: AC motors are present in various office equipment such as printers, photocopiers, scanners, and ventilation systems, ensuring their proper functioning.
  • Transportation: AC motors are used in electric vehicles, trams, trains, and other forms of electric transportation systems, providing the necessary propulsion.
  • Water and wastewater treatment: AC motors power pumps, mixers, and blowers in water treatment plants, wastewater treatment plants, and pumping stations.

The adaptability, efficiency, and controllability of AC motors make them suitable for a wide range of residential and commercial applications. Whether it’s powering household appliances or driving industrial machinery, AC motors play a vital role in meeting the diverse needs of both residential and commercial settings.

induction motor

Are there energy-saving technologies or features available in modern AC motors?

Yes, modern AC motors often incorporate various energy-saving technologies and features designed to improve their efficiency and reduce power consumption. These advancements aim to minimize energy losses and optimize motor performance. Here are some energy-saving technologies and features commonly found in modern AC motors:

  • High-Efficiency Designs: Modern AC motors are often designed with higher efficiency standards compared to older models. These motors are built using advanced materials and optimized designs to reduce energy losses, such as resistive losses in motor windings and mechanical losses due to friction and drag. High-efficiency motors can achieve energy savings by converting a higher percentage of electrical input power into useful mechanical work.
  • Premium Efficiency Standards: International standards and regulations, such as the NEMA Premium® and IE (International Efficiency) classifications, define minimum energy efficiency requirements for AC motors. Premium efficiency motors meet or exceed these standards, offering improved efficiency compared to standard motors. These motors often incorporate design enhancements, such as improved core materials, reduced winding resistance, and optimized ventilation systems, to achieve higher efficiency levels.
  • Variable Frequency Drives (VFDs): VFDs, also known as adjustable speed drives or inverters, are control devices that allow AC motors to operate at variable speeds by adjusting the frequency and voltage of the electrical power supplied to the motor. By matching the motor speed to the load requirements, VFDs can significantly reduce energy consumption. VFDs are particularly effective in applications where the motor operates at a partial load for extended periods, such as HVAC systems, pumps, and fans.
  • Efficient Motor Control Algorithms: Modern motor control algorithms, implemented in motor drives or control systems, optimize motor operation for improved energy efficiency. These algorithms dynamically adjust motor parameters, such as voltage, frequency, and current, based on load conditions, thereby minimizing energy wastage. Advanced control techniques, such as sensorless vector control or field-oriented control, enhance motor performance and efficiency by precisely regulating the motor’s magnetic field.
  • Improved Cooling and Ventilation: Effective cooling and ventilation are crucial for maintaining motor efficiency. Modern AC motors often feature enhanced cooling systems, including improved fan designs, better airflow management, and optimized ventilation paths. Efficient cooling helps prevent motor overheating and reduces losses due to heat dissipation. Some motors also incorporate thermal monitoring and protection mechanisms to avoid excessive temperatures and ensure optimal operating conditions.
  • Bearings and Friction Reduction: Friction losses in bearings and mechanical components can consume significant amounts of energy in AC motors. Modern motors employ advanced bearing technologies, such as sealed or lubrication-free bearings, to reduce friction and minimize energy losses. Additionally, optimized rotor and stator designs, along with improved manufacturing techniques, help reduce mechanical losses and enhance motor efficiency.
  • Power Factor Correction: Power factor is a measure of how effectively electrical power is being utilized. AC motors with poor power factor can contribute to increased reactive power consumption and lower overall power system efficiency. Power factor correction techniques, such as capacitor banks or power factor correction controllers, are often employed to improve power factor and minimize reactive power losses, resulting in more efficient motor operation.

By incorporating these energy-saving technologies and features, modern AC motors can achieve significant improvements in energy efficiency, leading to reduced power consumption and lower operating costs. When considering the use of AC motors, it is advisable to select models that meet or exceed recognized efficiency standards and consult manufacturers or experts to ensure the motor’s compatibility with specific applications and energy-saving requirements.

induction motor

How does the speed control mechanism work in AC motors?

The speed control mechanism in AC motors varies depending on the type of motor. Here, we will discuss the speed control methods used in two common types of AC motors: induction motors and synchronous motors.

Speed Control in Induction Motors:

Induction motors are typically designed to operate at a constant speed determined by the frequency of the AC power supply and the number of motor poles. However, there are several methods for controlling the speed of induction motors:

  1. Varying the Frequency: By varying the frequency of the AC power supply, the speed of an induction motor can be adjusted. This method is known as variable frequency drive (VFD) control. VFDs convert the incoming AC power supply into a variable frequency and voltage output, allowing precise control of motor speed. This method is commonly used in industrial applications where speed control is crucial, such as conveyors, pumps, and fans.
  2. Changing the Number of Stator Poles: The speed of an induction motor is inversely proportional to the number of stator poles. By changing the connections of the stator windings or using a motor with a different pole configuration, the speed can be adjusted. However, this method is less commonly used and is typically employed in specialized applications.
  3. Adding External Resistance: In some cases, external resistance can be added to the rotor circuit of an induction motor to control its speed. This method, known as rotor resistance control, involves inserting resistors in series with the rotor windings. By varying the resistance, the rotor current and torque can be adjusted, resulting in speed control. However, this method is less efficient and is mainly used in specific applications where precise control is not required.

Speed Control in Synchronous Motors:

Synchronous motors offer more precise speed control compared to induction motors due to their inherent synchronous operation. The following methods are commonly used for speed control in synchronous motors:

  1. Adjusting the AC Power Frequency: Similar to induction motors, changing the frequency of the AC power supply can control the speed of synchronous motors. By adjusting the power frequency, the synchronous speed of the motor can be altered. This method is often used in applications where precise speed control is required, such as industrial machinery and processes.
  2. Using a Variable Frequency Drive: Variable frequency drives (VFDs) can also be used to control the speed of synchronous motors. By converting the incoming AC power supply into a variable frequency and voltage output, VFDs can adjust the motor speed with high accuracy and efficiency.
  3. DC Field Control: In some synchronous motors, the rotor field is supplied by a direct current (DC) source, allowing for precise control over the motor’s speed. By adjusting the DC field current, the magnetic field strength and speed of the motor can be controlled. This method is commonly used in applications that require fine-tuned speed control, such as industrial processes and high-performance machinery.

These methods provide different ways to control the speed of AC motors, allowing for flexibility and adaptability in various applications. The choice of speed control mechanism depends on factors such as the motor type, desired speed range, accuracy requirements, efficiency considerations, and cost constraints.

China wholesaler Single-Phase Asynchronous Dual-Value AC High-Speed Motor   vacuum pump and compressor	China wholesaler Single-Phase Asynchronous Dual-Value AC High-Speed Motor   vacuum pump and compressor
editor by CX 2024-05-08

China Custom Three Phase AC Asynchronous Squirrel Cage Induction Electric Motor for Air Compressor Water Pump Fans Agricultural Machines vacuum pump

Product Description

 
 0.12~500KW IE2 ElECTRIC MOTOR
 

1) Frame sizes 71~400
2) Rated power 0.12~500kw 
3) Rated voltage 380 V, 660V or others
4) Frequency 50Hz/ 60HZ
5) Protection class IP55, IP56 or others
6) Insulation class F or H
7) Materials Cast iron, aluminum
8) Efficiency IE2 or higher
9) Poles 2/4/6/8/10
10) Cooling method IC411
11) Mounting types IMB5, B3, B35, B14 or others
12) Operating mode S1

 

 

WELCOME TO LANGRUI MOTOR

LANGRUI MOTOR is a leading electric motor manufacturer and supplier since 1958.

We have over 60 years’ experience in electric motor manufacturing, technical developing, design and innovation.

In addition to general purpose products, customized products are our superior advantages.

We have complete management, design, procurement, production, inspection, logistics and service.

We are certified by the international standard certification of ISO9001, ISO14001, ISO45001, CE, etc.

 

Professional products, reliable quality and excellent service credit us CHINAMFG reputation in the past decades years.

We are committed to providing better products and services to meet the actual needs of our customers, and to create maximum social benefits.

LANGRUI MOTOR RANGE

Single Phase Induction Motor IE2/IE3/IE4 Efficiency
Electric Motor
Squirrel Cage Induction Motor Slip Ring Induction Motor Brake Motor
Multi Speed Motor Inverter Duty Motor Explosion Proof Electric Motor Crane Duty Motor Vibration Motor
GOST Motor NEMA Motor Synchronous Motor DC Motor Customized Design Motor

LANGRUI SERVICE COUNTRY/AREA

LANGRUI MOTOR supplies our top-quality motor products to more than 40 countryies/areas.

Africa: Algeria, Egypt, Libya, Nigeria, South Africa, Tanzania, Zambia, etc.

America: Xihu (West Lake) Dis.via, Brazil, Chile, Colombia, Ecuador, Honduras, Mexico, Paraguay, Peru, etc.

Australia: Australia, etc.

East-Europe: Azerbaijan, Georgia, Russia, Ukraine, etc.

Europe: Albania, German, Macedonia, Netherlands, Italy, Spain, etc.

South-Asia: Bangladesh, India, Pakistan, Sri Lanka, etc.

Mid-East: Iran, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, U.A.E., etc.

Mid-Asia: Kazakhstan, Mongolia, Uzbekistan, etc.

Southeast-Asia: Indonesia, Malaysia, Philippine, Singapore, Thailand, Vietnam, etc.

 

LANGRUI APPLICATION

Our brand motor is well recognized and trusted in the field of compressors, fans, pump, conveyor, crane, crusher, elevators, grinder, mill, mixers, pressor, ventilator etc.

Our brand motor also win great credit in industries of agricultural, cement, centrifugal, chemical, food, forging, foundry, hydraulic, mine, oil, metallurgy, machine tools, package, pelleting, plastic, power, refrigerating, steel mill, textile, transportation and especially among the OEM production.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Closed Type
Number of Poles: 2-10
Customization:
Available

|

induction motor

What factors should be considered when selecting the right induction motor for a task?

When selecting the right induction motor for a specific task or application, several factors need to be considered. Here’s a detailed explanation of the key factors:

  • Power Requirements:
    • Determine the power requirements of the task, including the required torque and speed.
    • Select a motor with sufficient power output to meet the demands of the application.
    • Consider factors such as starting torque, peak torque, and continuous torque requirements.
  • Operating Conditions:
    • Consider the environmental conditions in which the motor will operate.
    • Assess factors such as temperature, humidity, altitude, and the presence of dust, chemicals, or other potentially corrosive substances.
    • Choose a motor that is suitable for the specific operating conditions to ensure long-term reliability and performance.
  • Speed Control:
    • Determine if speed control is required for the task.
    • Consider whether a fixed-speed motor or a variable speed motor, such as a motor with a variable frequency drive (VFD), is more suitable.
    • Variable speed motors offer flexibility in adjusting the motor’s speed to meet varying load requirements, while fixed-speed motors are simpler and may be more cost-effective for certain applications.
  • Efficiency:
    • Consider the desired efficiency of the motor.
    • Higher efficiency motors can reduce energy consumption and operating costs over the motor’s lifetime.
    • Look for motors that meet or exceed energy efficiency standards, such as those defined by regulatory agencies like the International Electrotechnical Commission (IEC) or the National Electrical Manufacturers Association (NEMA).
  • Size and Weight:
    • Consider the available space and weight limitations for the motor installation.
    • Choose a motor that fits within the physical constraints of the application without compromising performance or safety.
    • Smaller and lighter motors may be preferred for applications with limited space or weight restrictions.
  • Reliability and Maintenance:
    • Evaluate the reliability and maintenance requirements of the motor.
    • Consider the expected duty cycle, required service life, and the availability of spare parts.
    • Choose a motor from a reputable manufacturer known for producing reliable and durable products.
  • Budget:
    • Consider the budget constraints for the motor selection.
    • Balance the desired performance and features with the available budget.
    • Compare the initial purchase cost with the long-term operating costs and energy savings to make an informed decision.
  • Compatibility:
    • Ensure that the selected motor is compatible with the power supply available in the application.
    • Check voltage, frequency, and any specific requirements for the electrical system.
    • Consider the control and communication interfaces required for integration with other equipment or automation systems.

By carefully considering these factors, it is possible to select the right induction motor that meets the specific requirements of the task, ensuring optimal performance, reliability, and efficiency.

induction motor

What safety precautions should be followed when working with induction motors?

Working with induction motors requires adherence to proper safety precautions to minimize the risk of accidents, injuries, or equipment damage. Here are some important safety precautions to follow:

  • Electrical Safety:
    • Always de-energize the motor and ensure the power source is disconnected before working on or near the motor.
    • Use lockout/tagout procedures to secure the power source and prevent accidental energization during maintenance or repair work.
    • Wear appropriate personal protective equipment (PPE) such as insulated gloves, safety glasses, and electrical-rated footwear when working with live electrical components.
    • Follow electrical safety guidelines and local regulations when installing, wiring, or troubleshooting induction motors.
    • Ensure that the motor’s electrical connections are properly insulated and protected against accidental contact or short circuits.
  • Mechanical Safety:
    • Avoid wearing loose clothing, jewelry, or anything that can get entangled in moving parts of the motor.
    • Use machine guards, safety shields, or barriers to prevent accidental contact with rotating shafts, belts, or other hazardous motor components.
    • Ensure that the motor is securely mounted or fastened to prevent it from shifting or falling during operation.
    • Never reach into a running motor or attempt to make adjustments while the motor is in operation.
    • Allow the motor to come to a complete stop and wait for any residual motion to cease before performing maintenance tasks.
  • Heat and Ventilation:
    • Induction motors can generate heat during operation.
    • Avoid touching hot motor surfaces and allow sufficient cooling time before carrying out maintenance or inspection tasks.
    • Ensure that the motor’s ventilation system, including fans and cooling fins, is clean and unobstructed to prevent overheating.
    • Follow manufacturer guidelines for proper motor ventilation and cooling requirements.
  • Safe Lifting and Handling:
    • Induction motors can be heavy and require proper lifting and handling techniques.
    • Use appropriate lifting equipment and techniques to prevent strains or injuries when moving or installing motors.
    • Follow safe lifting practices and weight limits specified by the motor manufacturer.
    • Engage additional personnel or equipment if necessary to safely handle large or bulky motors.
  • Qualified Personnel:
    • Ensure that only qualified personnel with proper training and knowledge of induction motors are involved in installation, maintenance, or repair tasks.
    • Engage licensed electricians or technicians familiar with electrical safety procedures and motor handling practices.
    • Refer to motor-specific documentation, manuals, and guidelines provided by the manufacturer for proper handling, maintenance, and safety recommendations.
  • Documentation and Safety Guidelines:
    • Maintain records of motor-related safety procedures, maintenance activities, and incidents for future reference and continuous improvement.
    • Follow safety guidelines established by regulatory authorities, industry standards, and the organization’s safety policies.
    • Regularly review and update safety procedures and provide training to personnel to ensure awareness of safe practices when working with induction motors.

These safety precautions are essential for protecting personnel, preventing accidents, and maintaining a safe working environment when working with induction motors. It is crucial to prioritize safety at all times and comply with applicable safety regulations to mitigate risks associated with motor operation and maintenance.

induction motor

Can you explain the basic principles of induction motor operation?

An induction motor operates based on the fundamental principles of electromagnetism and electromagnetic induction. Here’s a detailed explanation of the basic principles of induction motor operation:

  • Electromagnetic Induction:
    • Electromagnetic induction is the phenomenon where a changing magnetic field induces an electromotive force (EMF) or voltage in a conductor.
    • In an induction motor, the stator windings are connected to an AC power supply, which produces a rotating magnetic field.
    • This rotating magnetic field induces voltage in the rotor conductors through electromagnetic induction.
  • Rotating Magnetic Field:
    • The stator windings of an induction motor are arranged in such a way that they create a rotating magnetic field when energized by the AC power supply.
    • The number of poles in the motor determines the speed of the rotating magnetic field. The synchronous speed of the magnetic field is given by the formula: synchronous speed = (120 x frequency) / number of poles.
    • For example, a 4-pole motor operating with a 60 Hz power supply will have a synchronous speed of 1,800 revolutions per minute (RPM).
    • The rotating magnetic field generated by the stator induces a voltage in the rotor conductors, which in turn creates its own magnetic field.
  • Slip and Rotor Movement:
    • When the rotor conductors are exposed to the rotating magnetic field, an induced voltage and current are generated in the rotor.
    • The interaction between the rotor’s magnetic field and the stator’s rotating magnetic field creates a torque, which causes the rotor to start rotating.
    • However, the rotor does not rotate at the synchronous speed of the magnetic field. The actual rotor speed is slightly lower, resulting in a slip.
    • The slip is necessary for the motor to develop torque. It allows the rotor to create its own magnetic field that interacts with the rotating magnetic field of the stator, generating the required torque to perform work.
  • Induced Rotor Current:
    • The rotor current is induced by the voltage difference between the rotor conductors and the rotating magnetic field of the stator.
    • For squirrel cage induction motors, the rotor consists of short-circuited conductive bars or loops. The induced current flows through these conductors, generating a magnetic field that opposes the stator’s magnetic field.
    • The interaction between the rotor’s magnetic field and the stator’s magnetic field produces torque, allowing the motor to overcome inertia and start rotating.
  • Motor Speed and Torque:
    • The speed of an induction motor is determined by the slip between the rotor speed and the synchronous speed of the rotating magnetic field.
    • A small slip allows the motor to develop torque and operate efficiently. As the load on the motor increases, the slip also increases to maintain the torque required to drive the load.
    • The torque produced by the motor is proportional to the square of the induced rotor current and is also influenced by the strength of the rotating magnetic field.

In summary, the basic principles of induction motor operation involve the generation of a rotating magnetic field by the stator windings, which induces voltage and current in the rotor conductors through electromagnetic induction. The interaction between the rotor’s magnetic field and the rotating magnetic field of the stator produces torque, allowing the motor to rotate and perform mechanical work. The slip between the rotor speed and the synchronous speed ensures the motor can develop the necessary torque for various loads.

China Custom Three Phase AC Asynchronous Squirrel Cage Induction Electric Motor for Air Compressor Water Pump Fans Agricultural Machines   vacuum pump	China Custom Three Phase AC Asynchronous Squirrel Cage Induction Electric Motor for Air Compressor Water Pump Fans Agricultural Machines   vacuum pump
editor by CX 2024-05-08

China Best Sales 3-250W Single Phase/Three Phase Electric Induction AC Gear Motor DC Motor with Spead Controller Reduction Box Brake Asynchronous Motor for Package Machine vacuum pump belt

Product Description

 

MOTOR FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
MOTOR TYPE INDUCTION MOTOR / REVERSIBLE MOTOR / TORQUE MOTOR / SPEED CONTROL MOTOR
SERIES K series
OUTPUT POWER 3 W / 6W / 10W / 15W / 25W / 40W / 60W / 90W / 120 W / 140W / 180W / 200W (can be customized)
OUTPUT SHAFT 8mm / 10mm / 12mm / 15mm ; round shaft, D-cut shaft, key-way shaft (can be customized)
Voltage type Single phase 100-120V 50/60Hz 4P Single phase 200-240V 50/60Hz 4P
Three phase 200-240V 50/60Hz Three phase 380-415V 50/60Hz 4P
Three phase 440-480V 60Hz 4P Three phase 200-240/380-415/440-480V 50/60/60Hz 4P
Accessories Terminal box type / with Fan / thermal protector / electromagnetic brake
Above 60 W, all assembled with fan
GEARBOX FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
GEAR RATIO 3G-300G
GEARBOX TYPE PARALLEL SHAFT GEARBOX AND STRENGTH TYPE
Right angle hollow worm shaft Right angle spiral bevel hollow shaft L type hollow shaft
Right angle CHINAMFG worm shaft Right angle spiral bevel CHINAMFG shaft L type CHINAMFG shaft
K2 series air tightness improved type
Certification CCC CE ISO9001 CQC

other product

 

Certifications

 

Packaging & Shipping

 

Company Profile

FAQ

Q: How to select a suitable motor or gearbox?
A:If you have motor pictures or drawings to show us, or you have detailed specifications, such as, voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors or gearboxes?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but some kind of molds are necessory to be developped which may need exact cost and design charging.

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Low Speed
Number of Stator: Single-Phase
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

induction motor

How do manufacturers ensure the quality and reliability of induction motors?

Manufacturers employ several measures and quality control processes to ensure the quality and reliability of induction motors. Here are some key steps taken by manufacturers:

  • Design and Engineering:
    • Manufacturers invest significant resources in the design and engineering of induction motors.
    • Experienced engineers use advanced computer-aided design (CAD) software to develop motor designs that meet performance specifications and industry standards.
    • Design considerations include efficient cooling, optimal winding configurations, and robust mechanical construction.
  • Material Selection:
    • Manufacturers carefully select high-quality materials that meet or exceed industry standards.
    • They use premium-grade electrical steel laminations for the motor core to minimize energy losses and maximize efficiency.
    • Copper or aluminum conductors with appropriate insulation are chosen for the motor windings to ensure reliable electrical performance.
  • Stringent Manufacturing Processes:
    • Manufacturers follow stringent manufacturing processes to ensure consistency and quality throughout production.
    • They employ advanced machinery and automation to achieve precise manufacturing tolerances and reduce human error.
    • Quality control checks are performed at various stages of the manufacturing process to identify and rectify any issues.
  • Testing and Inspection:
    • Induction motors undergo rigorous testing and inspection procedures to verify their performance and reliability.
    • Manufacturers conduct various tests, such as electrical tests, mechanical tests, insulation tests, and performance tests.
    • These tests ensure that the motors meet or exceed specified parameters for voltage, current, power factor, efficiency, torque, and speed.
    • Inspection processes involve visual inspections, dimensional checks, and verification of critical components.
  • Certifications and Compliance:
    • Reputable manufacturers ensure that their induction motors comply with relevant industry standards and regulations.
    • They obtain certifications, such as ISO 9001 for quality management systems, and adhere to specific standards like IEC (International Electrotechnical Commission) or NEMA (National Electrical Manufacturers Association).
    • Certifications and compliance demonstrate the manufacturer’s commitment to producing high-quality and reliable products.
  • Customer Feedback and Continuous Improvement:
    • Manufacturers value customer feedback and use it as a valuable source of information for continuous improvement.
    • They actively engage with customers to understand their needs and address any concerns or issues promptly.
    • Feedback helps manufacturers refine their designs, manufacturing processes, and quality control measures to enhance the overall quality and reliability of their induction motors.

By implementing these measures, manufacturers strive to ensure that their induction motors meet the highest standards of quality and reliability. Continuous improvement and adherence to industry best practices enable manufacturers to deliver products that perform consistently and reliably in a wide range of applications.

induction motor

How does an induction motor ensure consistent and reliable performance in various applications?

Induction motors are known for their consistent and reliable performance in a wide range of applications. These motors incorporate several design features and mechanisms that contribute to their ability to deliver consistent and reliable performance. Here’s a detailed explanation of how induction motors ensure such performance:

  • Robust Construction: Induction motors are designed with robust construction to withstand the demands of various applications. They are typically made with durable materials, such as cast iron or aluminum, for the motor frame and end brackets. The rotor and stator laminations are designed to minimize energy losses and maximize efficiency. The overall construction ensures the motor’s structural integrity, allowing it to withstand mechanical stresses and vibrations that may occur during operation.
  • Efficient Cooling: Proper cooling is essential for maintaining consistent and reliable motor performance. Induction motors are designed with efficient cooling systems to dissipate heat generated during operation. The most common cooling methods include open drip-proof (ODP), totally enclosed fan-cooled (TEFC), and air-to-water heat exchangers. These cooling systems prevent the motor from overheating, which can lead to performance degradation or motor failure.
  • High-Quality Insulation: Induction motors employ high-quality insulation materials to ensure reliable performance. The stator windings and rotor bars are insulated to withstand high voltages and prevent electrical breakdown. The insulation materials are carefully selected to provide thermal stability, mechanical strength, and resistance to environmental factors such as moisture, chemicals, and contaminants. High-quality insulation helps to prevent electrical faults and ensures safe and reliable motor operation.
  • Optimized Magnetic Design: The magnetic design of an induction motor plays a crucial role in its performance. The stator and rotor core materials are chosen to minimize energy losses and maximize magnetic flux density. The number of stator slots and rotor bars is carefully selected to achieve balanced magnetic fields and reduce harmonics. The magnetic design is optimized to provide high torque, efficiency, and power factor, resulting in consistent and reliable motor performance.
  • Motor Protection Devices: Induction motors are equipped with various protection devices to ensure safe and reliable operation. These devices monitor motor parameters and act to prevent damage or failures. Common motor protection devices include thermal overload relays, which monitor motor temperature and disconnect the motor in case of overheating, and current and voltage monitoring relays, which detect abnormal current or voltage conditions and trigger appropriate actions. Motor protection devices help to safeguard the motor and ensure consistent and reliable performance.
  • Maintenance and Service: Proper maintenance and service are essential for maintaining consistent and reliable motor performance over time. Regular inspections, lubrication, and cleaning help to identify and address potential issues before they escalate. Additionally, timely repairs and replacements of worn-out components or damaged parts contribute to the motor’s reliability and longevity. Following manufacturer-recommended maintenance practices and scheduling periodic service ensure that the motor remains in optimal condition for consistent and reliable performance.

In conclusion, induction motors ensure consistent and reliable performance in various applications through their robust construction, efficient cooling systems, high-quality insulation, optimized magnetic design, motor protection devices, and proper maintenance and service. These design features and mechanisms work together to provide a motor that can withstand the demands of different applications, deliver consistent performance, and operate reliably over an extended period.

induction motor

What are the common applications of induction motors?

Induction motors are widely used in various applications across different industries due to their robustness, reliability, and efficiency. Here are some common applications of induction motors:

  • Pumps: Induction motors are extensively used in water pumps for residential, commercial, and industrial applications. They provide the necessary power to drive the impeller and move water in systems such as well pumps, irrigation systems, sewage pumps, and circulation pumps.
  • Fans and Blowers: Induction motors are commonly found in HVAC (Heating, Ventilation, and Air Conditioning) systems, where they power fans and blowers. They are used in air handling units, exhaust fans, ceiling fans, and industrial fans to circulate air and provide ventilation.
  • Compressors: Induction motors play a vital role in driving compressors used in various applications. They are used in air compressors for pneumatic systems, refrigeration compressors for cooling and refrigeration units, and gas compressors for industrial processes.
  • Conveyor Systems: Induction motors provide the necessary power for driving conveyor belts in industries such as manufacturing, logistics, and mining. They enable the movement of materials and products along the conveyor lines efficiently and reliably.
  • Machinery and Equipment: Induction motors are used in a wide range of industrial machinery and equipment, including machine tools, pumps, mixers, agitators, crushers, mills, and extruders. They are essential for powering the mechanical components and ensuring smooth operation in various manufacturing processes.
  • Electric Vehicles: Induction motors are increasingly being utilized in electric vehicles (EVs) due to their efficiency and reliability. They provide the propulsion power to drive the wheels, allowing EVs to be environmentally friendly and energy-efficient alternatives to internal combustion engine vehicles.
  • Household Appliances: Induction motors are found in numerous household appliances, including refrigerators, washing machines, dishwashers, vacuum cleaners, and kitchen appliances. They are used to drive the motors in these appliances, enabling their essential functions.
  • Industrial Processes: Induction motors are employed in various industrial processes, such as pumps for water treatment plants, mixers for food processing, agitators for chemical industries, and crushers for mining operations. They are crucial for driving the necessary mechanical components and ensuring the smooth operation of these processes.

These are just a few examples of the wide range of applications where induction motors are commonly used. Their versatility, efficiency, and ability to handle heavy loads make them indispensable in industries and everyday life.

China Best Sales 3-250W Single Phase/Three Phase Electric Induction AC Gear Motor DC Motor with Spead Controller Reduction Box Brake Asynchronous Motor for Package Machine   vacuum pump belt	China Best Sales 3-250W Single Phase/Three Phase Electric Induction AC Gear Motor DC Motor with Spead Controller Reduction Box Brake Asynchronous Motor for Package Machine   vacuum pump belt
editor by CX 2024-05-08

China high quality AC DC Three Single Phase Asynchronous Induction BLDC Brushless Electrical Stepper Servo Gear Electric Motor vacuum pump oil

Product Description

AC DC Three Single Phase Asynchronous Synchronous Induction BLDC Brushless Electrical Stepper Servo Gear Stainless Steel Electric Motor

Product Description

1. Reliable performance, safe and easy operation.
2. Low noise, low vibration, and light in weight.
3. Wide range of speed, torque, and motor types.
4. Mounting dimensions conform to IEC standards, Gost standards, Nema standards.

Product Parameters

 

Power 0.06 ~ 2000kw
Typical motor types Asynchronous motor, Synchronous motor,
DC brush motor, DC brushless motor
Stepper motor, Servo motor
Aluminum motor, Cast iron motor, Stainless steel motor
Gear motor, with worm gearbox, helical gearbox, planetary gearbox, etc.
Frame Size 56 ~ 630
Phase Single or Three
Efficiency Class IE1 ~ IE4
Poles 2, 4, 6, 8 poles
Protection Class IP44, IP54, IP55, IP56, IP65, IP67 IP69K waterproof
Insulation Class B, F, H
Mounting Type B14, B3, B5, B35, B34
Ambient Temperature -15 ~ +40 °C, or customized
Altitude ≤1000M
Material Aluminum/Cast Iron/Stainless steel food grade

Related Product

 

                      Three Phase AC Motor                                            Single Phase AC Motor                                                VFD Inverter Duty Motor

                 Synchronous AC Motor                                        DC Brush or Brushless Motor                                              Stepper Motor

                          Servo Motor                                                         Stainless Steel Motor                                                  Various Types of Gearbox
 

Company Profile

 

Certifications

 

FAQ

Q: Can you make the electric motor with customization?
A: Yes, we can customize per your request, like power, voltage, speed, shaft size, wires, connectors, capacitors, terminal box, IP grade, etc.

Q: Do you provide samples?
A: Yes. A sample is available for testing.

Q: What’s your lead time?
A: Standard products need 5-30 days, a bit longer for customized products.

Q: Do you provide technical support?
A: Yes. Our company has a design and development team, we can provide technical support if you
need.

Q: How to ship to us?
A: It is available by air, by sea, or by train.

Q: How to pay the money?
A: T/T and L/C are preferred, with a different currency, including USD, EUR, RMB, etc.

Q: How can I know if the product is suitable for me?
A: >1ST confirm drawing and specification >2nd test sample >3rd start mass production.

Q: Can I come to your company to visit?
A: Yes, you are welcome to visit us at any time.

Q: How shall we contact you?
A: You can send an inquiry directly, and we will respond within 12 hours. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Single or Three Phase
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Blue or Silver
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

induction motor

What maintenance practices are essential for prolonging the lifespan of an induction motor?

Maintaining induction motors is crucial for ensuring their longevity and optimal performance. Here are some essential maintenance practices that can help prolong the lifespan of an induction motor:

  • Regular Inspections:
    • Perform routine visual inspections of the motor to check for any signs of wear, damage, or loose connections.
    • Inspect the motor’s ventilation system, cooling fans, and air filters to ensure proper airflow for cooling.
    • Look for any abnormal vibrations, unusual noises, or overheating during operation.
  • Cleaning and Lubrication:
    • Keep the motor clean by removing dust, dirt, and debris that may accumulate on the motor’s surfaces and cooling fins.
    • Regularly lubricate the motor’s bearings as per the manufacturer’s recommendations to reduce friction and wear.
    • Ensure that the lubrication used is compatible with the motor’s bearing type and operating conditions.
  • Monitoring and Testing:
    • Monitor the motor’s operating parameters such as voltage, current, power factor, and temperature using appropriate instrumentation.
    • Conduct periodic electrical tests, such as insulation resistance tests and winding resistance measurements, to detect any insulation deterioration or anomalies in the motor’s electrical circuit.
    • Perform vibration analysis and motor signature analysis to identify potential mechanical issues or faults in the motor’s components.
  • Belt and Coupling Maintenance:
    • If the motor is coupled to driven equipment using belts or couplings, regularly inspect and adjust the tension of the belts or couplings to ensure proper power transmission.
    • Replace worn-out or damaged belts and couplings promptly to prevent excessive vibrations or misalignments that can affect the motor’s performance.
  • Protection and Enclosure:
    • Ensure that the motor is adequately protected from environmental factors such as dust, moisture, and corrosive substances.
    • Verify that the motor’s enclosure or housing is intact and provides sufficient protection against ingress of foreign materials.
    • Consider installing additional protective measures, such as motor covers or guards, if the motor operates in harsh or hazardous environments.
  • Corrective Maintenance:
    • Promptly address any identified issues or abnormalities in the motor’s performance through corrective maintenance.
    • Repair or replace faulty components, such as bearings, windings, or capacitors, using genuine replacement parts recommended by the motor manufacturer.
    • Engage qualified technicians or electricians for complex repairs or rewinding tasks to ensure proper handling of the motor.
  • Documentation and Record-Keeping:
    • Maintain comprehensive records of the motor’s maintenance activities, including inspection reports, test results, repairs, and replacements.
    • Track the motor’s history and performance trends to identify any recurring issues or patterns that may require special attention.
    • Use the documentation and records as a reference for future maintenance and as a resource for troubleshooting or warranty claims.

Adhering to these maintenance practices can significantly extend the lifespan of an induction motor and ensure its reliable operation over time. Regular inspections, cleaning, monitoring, and timely corrective actions are key to preventing major failures and optimizing the motor’s performance.

induction motor

How do induction motors handle challenges like variations in voltage and frequency?

Induction motors are designed to handle challenges such as variations in voltage and frequency, and they have mechanisms in place to ensure reliable operation under these conditions. Here’s a detailed explanation of how induction motors handle these challenges:

Voltage Variations:

Induction motors are typically designed to operate within a certain voltage range. However, they can handle variations in voltage to some extent. Here’s how they handle voltage variations:

  • Stator Windings: The stator windings of an induction motor are designed to withstand voltage fluctuations. The insulation materials used in the windings provide protection against voltage surges and dips. The winding design and the number of turns are optimized to ensure the motor can operate within the specified voltage range while maintaining reliable performance.
  • Voltage Regulation: Voltage regulators or voltage stabilizers can be used to control and regulate the voltage supplied to an induction motor. These devices ensure that the motor receives a stable voltage within the acceptable range, even in the presence of fluctuations in the power supply. Voltage regulation helps maintain consistent motor performance and prevents damage that could occur due to excessively high or low voltages.
  • Motor Protection Devices: Induction motors are often equipped with protective devices such as overvoltage relays and undervoltage relays. These devices monitor the incoming voltage and trigger appropriate actions if the voltage exceeds or falls below the predefined thresholds. For example, if the voltage exceeds a certain limit, the overvoltage relay may trip and disconnect the motor from the power supply to prevent damage.

Frequency Variations:

Induction motors are designed to operate at a specific frequency, typically 50 or 60 Hz, depending on the region. However, they can handle certain variations in frequency while maintaining reasonably stable performance. Here’s how induction motors handle frequency variations:

  • Synchronous Speed: The speed of an induction motor is determined by the frequency of the power supply and the number of poles in the motor. When the frequency varies, the synchronous speed of the motor changes accordingly. However, the motor’s actual operating speed, known as the slip speed, remains relatively constant. This allows the motor to maintain its output power and torque, although the speed may vary slightly.
  • Motor Design: The design of induction motors takes into account the expected frequency variations in the power supply. The number of poles and the winding configuration are selected to ensure that the motor can operate within an acceptable range of frequencies while maintaining optimal performance. The motor’s mechanical and electrical characteristics are carefully matched to achieve the desired operating parameters under different frequency conditions.
  • Frequency Converters: In some cases, frequency converters or Variable Frequency Drives (VFDs) are used to control the speed of induction motors. These devices can vary the frequency supplied to the motor, allowing precise control of the motor speed. Frequency converters are particularly useful in applications where the motor needs to operate at different speeds or where the power supply frequency is not compatible with the motor’s design.
  • Motor Protection Devices: Similar to voltage variations, induction motors can be equipped with protective devices to monitor the frequency of the power supply. These devices can detect significant deviations from the expected frequency and trigger appropriate actions, such as shutting down the motor or providing an alarm signal. Protecting the motor against extreme frequency variations helps prevent damage and ensures safe operation.

In conclusion, induction motors are designed to handle challenges such as variations in voltage and frequency. Through appropriate design considerations, voltage regulation mechanisms, protective devices, and the use of frequency converters, induction motors can operate reliably and maintain reasonably stable performance even in the presence of fluctuations in the power supply. These features contribute to the versatility and resilience of induction motors in various industrial applications.

induction motor

How does an induction motor ensure efficient and reliable performance?

An induction motor is designed and engineered to ensure efficient and reliable performance. Here’s a detailed explanation of how an induction motor achieves these qualities:

  • Robust Construction:
    • Induction motors are built with robust construction techniques and materials to withstand the demands of various applications.
    • The stator and rotor cores are typically made from laminated steel sheets, which reduce eddy current losses and improve magnetic flux efficiency.
    • The rotor is often constructed as a squirrel cage, consisting of short-circuited conductive bars or loops, which enhances durability and eliminates the need for maintenance-prone components like brushes and commutators.
  • Efficient Design:
    • Induction motors are designed for high efficiency, which means they convert a significant portion of the electrical input power into useful mechanical power.
    • The rotor design and the air gap between the rotor and stator are optimized to minimize energy losses and maximize torque production.
    • The stator windings are carefully designed to produce a rotating magnetic field with minimal copper losses and magnetic flux leakage.
    • Efficiency is further improved by using high-quality materials with low electrical resistance for the stator windings and rotor conductors.
  • Self-Starting Capability:
    • Induction motors have a self-starting capability, meaning they can start and accelerate to their operating speed without the need for additional starting mechanisms.
    • When the motor is connected to an AC power supply, the rotating magnetic field generated by the stator windings induces voltage and current in the rotor, initiating rotation.
    • This self-starting feature eliminates the need for complex and maintenance-prone starting mechanisms, resulting in a reliable and hassle-free motor operation.
  • Low Maintenance:
    • Induction motors are known for their low maintenance requirements.
    • They do not have brushes or commutators that require regular replacement or servicing.
    • The absence of these components reduces wear and maintenance costs, making induction motors highly reliable and cost-effective.
  • Protection Mechanisms:
    • Induction motors are equipped with various protection mechanisms to ensure safe and reliable operation.
    • Thermal protection devices, such as thermal overload relays or thermistors, are used to monitor the motor’s temperature and prevent overheating.
    • Overcurrent and short-circuit protection devices, such as circuit breakers or fuses, safeguard the motor against excessive current and electrical faults.
    • Voltage and phase protection devices help protect the motor from voltage fluctuations and phase imbalances, which can cause damage or affect performance.
  • Efficient Cooling:
    • Induction motors are designed with effective cooling mechanisms to dissipate heat generated during operation.
    • Fans or other cooling methods are employed to circulate air over the motor’s internal components, ensuring optimal operating temperatures.
    • Proper cooling minimizes temperature rise, prevents insulation degradation, and extends the motor’s lifespan and performance.
  • Quality Manufacturing:
    • Induction motors are manufactured using quality control measures to ensure consistent performance and reliability.
    • Manufacturers adhere to industry standards and conduct rigorous testing and inspection procedures during the production process.
    • This attention to quality ensures that each motor meets the required specifications and performs reliably in various operating conditions.

By incorporating these features and design considerations, induction motors deliver efficient and reliable performance, making them a popular choice for a wide range of applications in industries and everyday use.

China high quality AC DC Three Single Phase Asynchronous Induction BLDC Brushless Electrical Stepper Servo Gear Electric Motor   vacuum pump oil	China high quality AC DC Three Single Phase Asynchronous Induction BLDC Brushless Electrical Stepper Servo Gear Electric Motor   vacuum pump oil
editor by CX 2024-05-07

China Hot selling Three-Phase Asynchronous Squirrel-Cage Cast Iron Induction Electric Motor vacuum pump and compressor

Product Description

Product Description

 

Three-Phase Asynchronous Squirrel-Cage Cast Iron Induction Electric Motor

Motor Summary
 

Frame size 80- 355
Pole 2 ~ 6
Rated voltage 380V
Frequency 50Hz
Power 0.75kw ~ 315Kw
Protection degree IP54
Cooling method IC411
Insulation class F
Ambient Temperature -15°C~40°C
Altitude up to 1000m over sea
Working Duty S1(Continuous)

Product Description

Products certification:

Application fields: 
SEIMENS CHINAMFG motors are suitable for pumps, fans, compressors, texitle machine and mechanical machine applications where variable or constant speed is required.

Company ability:

Warehouse

products inspection befor delivery

Stocks

office area

FAQ
Q: What is the different between CHINAMFG CHINAMFG series and CHINAMFG Simotics GP series?
A: Both motors are made by the CHINAMFG (China) Ltd. SIEMENS Simotics GP series apply Europe design and SIEMENS CHINAMFG adopt the China GB design standard. Technical parameters are different.

Q: What is your MOQ of this item?
A: 1PCS.
     For the first time cooperation, we accept trial sample order.
 
Q: What’s your payment terms?
A: 30% T/T deposit, 70% balance before shipment,  L/C , paypal .ect.
 
Q: What’s the leed time?
A: standard product 20 days after receiving your L/C or T/T deposit.

Q: Can we used our own brand on motors ?
A: Sorry, not possible.

Q: How long is your warranty?
A: 12 months after receiving B/L.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial, Universal
Operating Speed: Constant Speed
Number of Stator: Three-Phase
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

induction motor

Can you provide examples of machinery or equipment that frequently use induction motors?

Induction motors are widely used in various machinery and equipment across different industries due to their efficiency, reliability, and versatility. Here are some examples of machinery and equipment that frequently utilize induction motors:

  • Pumps:
    • Water pumps, centrifugal pumps, and sewage pumps commonly employ induction motors for fluid transfer and circulation in residential, commercial, and industrial settings.
    • These motors offer efficient operation and can handle a wide range of flow rates and pressures.
  • Fans and Blowers:
    • Induction motors power fans and blowers used in HVAC systems, ventilation systems, cooling towers, and industrial air handling units.
    • These motors provide the necessary airflow for temperature control, air circulation, and exhaust systems.
  • Compressors:
    • Air compressors, refrigeration compressors, and gas compressors often rely on induction motors for generating compressed air or gas.
    • Induction motors can deliver the high torque required for compression tasks.
  • Conveyors:
    • Conveyor belts used in manufacturing, mining, logistics, and material handling systems are commonly driven by induction motors.
    • These motors provide the necessary power and torque to transport goods and materials along the conveyor line.
  • Mixers and Agitators:
    • Industrial mixers, agitators, and stirrers utilize induction motors for blending, stirring, and homogenizing various substances.
    • These motors offer reliable and precise control over mixing processes.
  • Machine Tools:
    • Induction motors are commonly found in machine tools such as lathes, milling machines, grinders, and drilling machines.
    • They provide the rotational power and speed control required for machining operations.
  • Conveyor Systems:
    • Automated conveyor systems used in warehouses, distribution centers, and manufacturing facilities often rely on induction motors for smooth and efficient material handling.
    • These motors power the conveyor belts and ensure the seamless movement of goods.
  • Industrial Dryers:
    • Induction motors drive the rotating drums or fans in industrial dryers used for drying various materials, such as textiles, food products, and chemicals.
    • These motors provide the necessary heat exchange and airflow for efficient drying processes.
  • Machine-driven Tools:
    • Power tools like circular saws, drills, grinders, and routers often utilize induction motors for their compact size, lightweight, and high torque capabilities.
    • These motors enable efficient and precise cutting, drilling, grinding, and shaping tasks.

These examples represent just a fraction of the wide range of machinery and equipment that frequently use induction motors. The versatility and reliability of induction motors make them a popular choice across numerous industries and applications.

induction motor

How do induction motors handle variations in load, speed, and torque?

Induction motors are designed to handle variations in load, speed, and torque through their inherent characteristics and control mechanisms. Here’s a detailed explanation of how induction motors handle these variations:

Variations in Load:

Induction motors can effectively handle variations in load due to their unique operating principle. These motors rely on electromagnetic induction to generate a rotating magnetic field, which interacts with the rotor to produce torque. When the load on the motor changes, the motor adjusts to maintain the required torque. Here’s how induction motors handle load variations:

  • Slip: Induction motors operate at a certain slip, which is the difference between the synchronous speed and the actual rotor speed. The slip allows the motor to maintain torque when the load changes. As the load increases, the slip also increases, enabling the motor to deliver more torque.
  • Torque-Slip Characteristics: Induction motors exhibit a characteristic known as torque-slip curve. This curve shows the relationship between torque and slip. The torque-slip curve demonstrates that the motor can deliver high torque at low slip (during startup or heavy loads) and lower torque at higher slip (during light loads).
  • Stable Operation: Induction motors are designed to operate with a certain margin between the available torque and the torque required by the load. This margin allows the motor to accommodate variations in load while maintaining stable and continuous operation.

Variations in Speed:

Induction motors can handle variations in speed through the following mechanisms:

  • Synchronous Speed: The synchronous speed of an induction motor is determined by the frequency of the power supply and the number of poles in the motor. It represents the speed at which the rotating magnetic field would move if there were no slip. However, the actual speed of the rotor is always slightly less than the synchronous speed due to slip.
  • Fixed Speed: Standard induction motors are designed to operate at a fixed speed, which is determined by the power supply frequency and the number of poles. Therefore, they are often referred to as “constant-speed motors.” These motors are suitable for applications where a consistent speed is required, such as in many industrial processes.
  • Variable Speed: To handle variations in speed, induction motors can be equipped with additional control mechanisms. One common method is to use a variable frequency drive (VFD). A VFD allows precise control of the motor’s speed by adjusting the frequency and voltage supplied to the motor. By varying the frequency and voltage, the motor’s speed can be adjusted to match the requirements of the application.
  • Inertia: Induction motors have a certain amount of inertia, which provides stability and helps them resist sudden changes in speed. The inertia allows the motor to maintain a relatively constant speed even when the load changes momentarily.

Variations in Torque:

Induction motors can handle variations in torque through their inherent design and operating characteristics:

  • Starting Torque: Induction motors can provide high starting torque to overcome the inertia of the load during startup. This starting torque allows the motor to start and accelerate the load smoothly.
  • Full-Load Torque: Induction motors are designed to deliver the rated full-load torque required by the application. The full-load torque ensures that the motor can handle the normal operating conditions and provide the necessary power to drive the load efficiently.
  • Overload Capacity: Induction motors often have an overload capacity that allows them to handle temporary increases in torque beyond their rated full-load torque. This overload capacity is useful for applications that may experience occasional high torque demands or temporary overloads.
  • Controlled Torque: By using control methods such as VFDs, induction motors can have their torque adjusted and controlled precisely based on the requirements of the application. This allows for flexibility in matching the motor’s torque output to the load’s needs.

In conclusion, induction motors handle variations in load, speed, and torque through their inherent characteristics such as slip, torque-slip curve, fixed speed, and the use of additional control mechanisms like variable frequency drives. These features enable induction motors to provide stable operation, adjust their speed, and deliver the required torque to meet the demands of various applications.

induction motor

How does an induction motor ensure efficient and reliable performance?

An induction motor is designed and engineered to ensure efficient and reliable performance. Here’s a detailed explanation of how an induction motor achieves these qualities:

  • Robust Construction:
    • Induction motors are built with robust construction techniques and materials to withstand the demands of various applications.
    • The stator and rotor cores are typically made from laminated steel sheets, which reduce eddy current losses and improve magnetic flux efficiency.
    • The rotor is often constructed as a squirrel cage, consisting of short-circuited conductive bars or loops, which enhances durability and eliminates the need for maintenance-prone components like brushes and commutators.
  • Efficient Design:
    • Induction motors are designed for high efficiency, which means they convert a significant portion of the electrical input power into useful mechanical power.
    • The rotor design and the air gap between the rotor and stator are optimized to minimize energy losses and maximize torque production.
    • The stator windings are carefully designed to produce a rotating magnetic field with minimal copper losses and magnetic flux leakage.
    • Efficiency is further improved by using high-quality materials with low electrical resistance for the stator windings and rotor conductors.
  • Self-Starting Capability:
    • Induction motors have a self-starting capability, meaning they can start and accelerate to their operating speed without the need for additional starting mechanisms.
    • When the motor is connected to an AC power supply, the rotating magnetic field generated by the stator windings induces voltage and current in the rotor, initiating rotation.
    • This self-starting feature eliminates the need for complex and maintenance-prone starting mechanisms, resulting in a reliable and hassle-free motor operation.
  • Low Maintenance:
    • Induction motors are known for their low maintenance requirements.
    • They do not have brushes or commutators that require regular replacement or servicing.
    • The absence of these components reduces wear and maintenance costs, making induction motors highly reliable and cost-effective.
  • Protection Mechanisms:
    • Induction motors are equipped with various protection mechanisms to ensure safe and reliable operation.
    • Thermal protection devices, such as thermal overload relays or thermistors, are used to monitor the motor’s temperature and prevent overheating.
    • Overcurrent and short-circuit protection devices, such as circuit breakers or fuses, safeguard the motor against excessive current and electrical faults.
    • Voltage and phase protection devices help protect the motor from voltage fluctuations and phase imbalances, which can cause damage or affect performance.
  • Efficient Cooling:
    • Induction motors are designed with effective cooling mechanisms to dissipate heat generated during operation.
    • Fans or other cooling methods are employed to circulate air over the motor’s internal components, ensuring optimal operating temperatures.
    • Proper cooling minimizes temperature rise, prevents insulation degradation, and extends the motor’s lifespan and performance.
  • Quality Manufacturing:
    • Induction motors are manufactured using quality control measures to ensure consistent performance and reliability.
    • Manufacturers adhere to industry standards and conduct rigorous testing and inspection procedures during the production process.
    • This attention to quality ensures that each motor meets the required specifications and performs reliably in various operating conditions.

By incorporating these features and design considerations, induction motors deliver efficient and reliable performance, making them a popular choice for a wide range of applications in industries and everyday use.

China Hot selling Three-Phase Asynchronous Squirrel-Cage Cast Iron Induction Electric Motor   vacuum pump and compressor	China Hot selling Three-Phase Asynchronous Squirrel-Cage Cast Iron Induction Electric Motor   vacuum pump and compressor
editor by CX 2024-05-07