China factory Silinman 6W AC Induction Motor vacuum pump brakes

Product Description

Technical Standard of Micro AC Gear Motor
Insulation resistance:under normal temperature normal humidity condition,at motor rated operation,use DC500V megger,measure the insulation resistance between the winding and casing, which should be above 100MΩ
Insulation voltage:under normal temperature normal humidity condition,at motor rated operation,apply a voltage 1.5KV(50hz/60hz) between winding and casing for 1 minute without any abnormalities.
Temperature rise:under normal load condition and rated operation, the temperature rise of the winding measured by the resistance method should be within 75K
Insulation level:F(130°C)
Overheat protection: can customize overheat protection device(automatic reset type),115°C automatic stop,85°C±15°C automatic reset
Ambient temperature:-10°C-40°C(No freezing)
Ambient humidity:below 85%(no condensation)


Micro AC Gear Motor=Micro AC Motor(Induction motor, reversible motor,torque motor)+Gearbox(Reducer)
Micro AC Motor type:
1)Induction motor, with working form,S1-continuous working;
2)Reversible motor, with working form S2-30min working;
3)Torque motor,

Motor Size:60mm,70mm,80mm,90mm,104mm,120mm
Motor Power:6w,10w,15w,25w,40w,60w,90w,120w,140w,180w,200w,250w,300w,370w,400w,750w,1.5kw
Motor Voltage:AC,1phase110v,1phase220v,1phase230v,3phase220v,3phase380v,3phase220v/380v,and other customized voltages
Motor Poles and Speed:4P,1400rpm/50Hz;1680rpm/60Hz(2P is available)
Motor accessories:electromagnetic brake,terminal box,thermally protection,fan
Output shaft:round shaft,gear shaft
Rotation direction:CW,CCW


Micro AC Motor with round shaft 


Micro AC Motor with gear shaft

Gearbox type:GK,GS,90mm five-stage
Gearbox size:60mm,70mm,80mm,90mm,104mm,120mm
Gearbox ratio:2K-750K

Decimal middle gearbox:10X

AC motor description:

Gearbox description:

AC Motor Specification:

Gearbox Specification:
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Automation Equipment
Operating Speed: Adjust Speed, Constant Speed
Power Source: AC Motor
Function: Driving
Casing Protection: Closed Type
Number of Poles: 4poles and 2poles


induction motor

How do manufacturers ensure the quality and reliability of induction motors?

Manufacturers employ several measures and quality control processes to ensure the quality and reliability of induction motors. Here are some key steps taken by manufacturers:

  • Design and Engineering:
    • Manufacturers invest significant resources in the design and engineering of induction motors.
    • Experienced engineers use advanced computer-aided design (CAD) software to develop motor designs that meet performance specifications and industry standards.
    • Design considerations include efficient cooling, optimal winding configurations, and robust mechanical construction.
  • Material Selection:
    • Manufacturers carefully select high-quality materials that meet or exceed industry standards.
    • They use premium-grade electrical steel laminations for the motor core to minimize energy losses and maximize efficiency.
    • Copper or aluminum conductors with appropriate insulation are chosen for the motor windings to ensure reliable electrical performance.
  • Stringent Manufacturing Processes:
    • Manufacturers follow stringent manufacturing processes to ensure consistency and quality throughout production.
    • They employ advanced machinery and automation to achieve precise manufacturing tolerances and reduce human error.
    • Quality control checks are performed at various stages of the manufacturing process to identify and rectify any issues.
  • Testing and Inspection:
    • Induction motors undergo rigorous testing and inspection procedures to verify their performance and reliability.
    • Manufacturers conduct various tests, such as electrical tests, mechanical tests, insulation tests, and performance tests.
    • These tests ensure that the motors meet or exceed specified parameters for voltage, current, power factor, efficiency, torque, and speed.
    • Inspection processes involve visual inspections, dimensional checks, and verification of critical components.
  • Certifications and Compliance:
    • Reputable manufacturers ensure that their induction motors comply with relevant industry standards and regulations.
    • They obtain certifications, such as ISO 9001 for quality management systems, and adhere to specific standards like IEC (International Electrotechnical Commission) or NEMA (National Electrical Manufacturers Association).
    • Certifications and compliance demonstrate the manufacturer’s commitment to producing high-quality and reliable products.
  • Customer Feedback and Continuous Improvement:
    • Manufacturers value customer feedback and use it as a valuable source of information for continuous improvement.
    • They actively engage with customers to understand their needs and address any concerns or issues promptly.
    • Feedback helps manufacturers refine their designs, manufacturing processes, and quality control measures to enhance the overall quality and reliability of their induction motors.

By implementing these measures, manufacturers strive to ensure that their induction motors meet the highest standards of quality and reliability. Continuous improvement and adherence to industry best practices enable manufacturers to deliver products that perform consistently and reliably in a wide range of applications.

induction motor

Can induction motors be customized for specific power and speed requirements?

Yes, induction motors can be customized to meet specific power and speed requirements. Manufacturers offer a range of options and configurations that allow customers to tailor induction motors to their specific application needs. Here’s a detailed explanation of how induction motors can be customized:

Power Requirements:

Induction motors can be customized to deliver the required power output for a particular application. The power output of an induction motor is determined by various factors, including the motor’s size, number of poles, and voltage rating. Manufacturers offer a wide range of motor sizes and configurations, allowing customers to select the appropriate motor with the desired power rating. Additionally, motors can be wound with different wire gauges and winding configurations to optimize the power output based on specific requirements.

For higher power requirements, manufacturers may offer larger frame sizes with higher voltage and current ratings. These motors are designed with larger cores, more robust windings, and enhanced cooling systems to handle the increased power levels. On the other hand, for lower power requirements, smaller frame sizes with lower voltage and current ratings can be chosen to achieve optimal performance and efficiency.

Speed Requirements:

Induction motors can also be customized to meet specific speed requirements. The speed of an induction motor is determined by the frequency of the power supply and the number of poles in the motor. By selecting the appropriate motor with the desired number of poles, customers can achieve the desired operating speed for their application.

In cases where the standard power supply frequency does not match the desired motor speed, frequency converters or Variable Frequency Drives (VFDs) can be used. These devices allow precise control of the motor speed by adjusting the frequency of the power supplied to the motor. With the use of frequency converters, induction motors can be operated at speeds different from the standard synchronous speed, enabling customization to specific speed requirements.

Additional Customization Options:

In addition to power and speed requirements, induction motors can be customized in various other ways to meet specific application needs:

  • Mounting Configurations: Induction motors can be customized with different mounting configurations to suit specific installation requirements. Common mounting options include foot-mounted, flange-mounted, and flange-foot-mounted motors. By selecting the appropriate mounting configuration, customers can ensure easy integration and optimal use of available space.
  • Shaft Configurations: Induction motors can be customized with different shaft configurations, such as single-ended shafts, double-ended shafts, or extended shafts. The shaft diameter and length can also be tailored to accommodate specific coupling arrangements or to meet specific mechanical interface requirements.
  • Enclosure Types: Induction motors can be customized with different enclosure types to provide appropriate protection in various operating environments. Common enclosure options include open drip-proof (ODP), totally enclosed fan-cooled (TEFC), and explosion-proof enclosures. The choice of enclosure depends on factors such as the presence of dust, moisture, or hazardous substances in the operating environment.
  • Additional Features: Manufacturers may offer additional features and options to customize induction motors further. These may include special bearing arrangements, improved insulation systems, enhanced cooling options, specialized coatings for corrosion resistance, and built-in sensors for condition monitoring and diagnostics.

By considering these customization options, customers can select or design induction motors that precisely meet their specific power and speed requirements, as well as other application-specific needs.

In conclusion, induction motors can be customized to deliver the required power and speed for specific applications. Manufacturers offer a wide range of options, allowing customers to select motors with the desired power ratings and choose the appropriate number of poles or use frequency converters to achieve the desired speed. Additional customization options, such as mounting configurations, shaft configurations, enclosure types, and additional features, provide further flexibility in tailoring induction motors to specific application requirements.

induction motor

How does an induction motor ensure efficient and reliable performance?

An induction motor is designed and engineered to ensure efficient and reliable performance. Here’s a detailed explanation of how an induction motor achieves these qualities:

  • Robust Construction:
    • Induction motors are built with robust construction techniques and materials to withstand the demands of various applications.
    • The stator and rotor cores are typically made from laminated steel sheets, which reduce eddy current losses and improve magnetic flux efficiency.
    • The rotor is often constructed as a squirrel cage, consisting of short-circuited conductive bars or loops, which enhances durability and eliminates the need for maintenance-prone components like brushes and commutators.
  • Efficient Design:
    • Induction motors are designed for high efficiency, which means they convert a significant portion of the electrical input power into useful mechanical power.
    • The rotor design and the air gap between the rotor and stator are optimized to minimize energy losses and maximize torque production.
    • The stator windings are carefully designed to produce a rotating magnetic field with minimal copper losses and magnetic flux leakage.
    • Efficiency is further improved by using high-quality materials with low electrical resistance for the stator windings and rotor conductors.
  • Self-Starting Capability:
    • Induction motors have a self-starting capability, meaning they can start and accelerate to their operating speed without the need for additional starting mechanisms.
    • When the motor is connected to an AC power supply, the rotating magnetic field generated by the stator windings induces voltage and current in the rotor, initiating rotation.
    • This self-starting feature eliminates the need for complex and maintenance-prone starting mechanisms, resulting in a reliable and hassle-free motor operation.
  • Low Maintenance:
    • Induction motors are known for their low maintenance requirements.
    • They do not have brushes or commutators that require regular replacement or servicing.
    • The absence of these components reduces wear and maintenance costs, making induction motors highly reliable and cost-effective.
  • Protection Mechanisms:
    • Induction motors are equipped with various protection mechanisms to ensure safe and reliable operation.
    • Thermal protection devices, such as thermal overload relays or thermistors, are used to monitor the motor’s temperature and prevent overheating.
    • Overcurrent and short-circuit protection devices, such as circuit breakers or fuses, safeguard the motor against excessive current and electrical faults.
    • Voltage and phase protection devices help protect the motor from voltage fluctuations and phase imbalances, which can cause damage or affect performance.
  • Efficient Cooling:
    • Induction motors are designed with effective cooling mechanisms to dissipate heat generated during operation.
    • Fans or other cooling methods are employed to circulate air over the motor’s internal components, ensuring optimal operating temperatures.
    • Proper cooling minimizes temperature rise, prevents insulation degradation, and extends the motor’s lifespan and performance.
  • Quality Manufacturing:
    • Induction motors are manufactured using quality control measures to ensure consistent performance and reliability.
    • Manufacturers adhere to industry standards and conduct rigorous testing and inspection procedures during the production process.
    • This attention to quality ensures that each motor meets the required specifications and performs reliably in various operating conditions.

By incorporating these features and design considerations, induction motors deliver efficient and reliable performance, making them a popular choice for a wide range of applications in industries and everyday use.

China factory Silinman 6W AC Induction Motor   vacuum pump brakesChina factory Silinman 6W AC Induction Motor   vacuum pump brakes
editor by CX 2024-04-19